首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Activities of space materials science research in China have been continuously supported by two main national programs. One is the China Space Station (CSS) program since 1992, and the other is the Strategic Priority Program (SPP) on Space Science since 2011. In CSS plan in 2019, eleven space materials science experimental projects were officially approved for execution during the construction of the space station. In the SPP Phase II launched in 2018, seven pre-research projects are deployed as the first batch in 2018, and one concept study project in 2019. These pre-research projects will be cultivated as candidates for future selection as space experiment projects on the recovery of scientific experimental satellites in the future. A new apparatus of electrostatic levitation system for ground-based research of space materials science and rapid solidification research has been developed under the support of the National Natural Science Foundation of China. In order to promote domestic academic activities and to enhance the advancement of space materials science in China, the Space Materials Science and Technology Division belong to the Chinese Materials Research Society was established in 2019. We also organized scientists to write five review papers on space materials science as a special topic published in the journal Scientia Sinica to provide valuable scientific and technical references for Chinese researchers.   相似文献   

2.
The core module of China's Space Station (CSS) is scheduled to be launched around the end of 2020, and the experimental module I and II will be launched in the next two years. After on-orbit constructions, CSS will be transferred into an operation period over 10 years (2022-2032 and beyond) to continuously implement space science missions. At present, based on the project selection and research work in the ground development period of CSS, China is systematically making a utilization mission planning for the operation period, which focuses on the fields of aerospace medicine and human research, space life science and biotechnology, microgravity fluid physics, combustion science, materials science, fundamental physics, space astronomy and astrophysics, Earth science, space physics and space environment, space application technology, etc. In combination with the latest development trend of space science and technology, China will continue to update planning for science research and technology development, carry out project cultivation, payload R&D, and upgrade onboard and ground experiment supporting systems to achieve greater comprehensive benefits in science, technology, economy, and society.   相似文献   

3.
Materials Experiment on Tiangong-2 Space Laboratory   总被引:1,自引:1,他引:0       下载免费PDF全文
During the China's Tiangong-2 (TG-2) flight mission, the experiments of 18 kinds of material samples were conducted in space by using a Multiple Materials Processing Furnace (MMPF) mounted in the orbital module of the TG-2 space laboratory. After the experiments of 12 kinds of samples of the first and second batches were completed successfully, astronauts packed and brought them back to the ground by ShenzhouⅡ spacecraft. By studying processing and formation on semiconductor and optoelectronics materials, metal alloys and metastable materials, functional single-crystal, micro-and nano-composite materials encapsulated in sample ampoules both in space and on Earth, we expect to explore some physical and chemical processes and mechanism of the materials formation that are normally obscured and therefore are difficult to study quantitatively on the ground due to the gravity-induced convection, to obtain the processing and synthesis technology for preparing high quality materials, and lead to the improvement and development of materials processing techniques on Earth, and also develop the experiment device and comprehensive ability for materials experiment in microgravity environment. This report briefly introduces the main points of each research work and preliminary comparative analysis results of 12 samples carried out by scientists undertaking research task.   相似文献   

4.
Envelope materials are extremely vital for stratospheric airships, which are widely used in numerous applications. The influence of processing as well as the storage and utilization conditions on the performance of envelope materials has been studied systematically for the first time. Results show that the performance of envelope materials depends largely on the hot-pressing temperature and the flexing during processing. The tensile strength of samples dropped to 289.1 ± 8.0 MPa from 346.6 ± 9.3 MPa when pressed at temperature above 180 °C and helium leakage appeared. The outer layers would be worn off when flexed no matter by manual or machine, resulting in dramatic increase of helium permeability and even leakage as well as varying decrease of mechanical properties. Hence, suitable hot-pressing temperature and limitation of flexing as little as possible during processing are essential to obtain products with suitable properties. Besides, the storage and utilization conditions are also critical to the properties of envelope materials. Both naturally aged samples in outdoor storage on ground and samples recovered from actual flight on stratospheric airship exhibited reduced mechanical properties and even helium leakage due to excess solar irradiation, ozone concentration and energetic particles interaction compared with those stored indoors. The weatherability of envelope materials should be further strengthened in the next few years. This research could provide a theoretical guidance for actual practice.  相似文献   

5.
讨论空间环境对材料制备的影响;提出空间材料研究的四个发展阶段和各国空间材料制备现今处在研究发展阶段的观点;分析我国空间材料研究的状况、任务及试验的可能途径;叙述空间材料科学研究的内容;对2000年前我国空间材料试验提出初步设想。  相似文献   

6.
中国微重力科学研究回顾与展望   总被引:2,自引:1,他引:1       下载免费PDF全文
微重力科学主要研究微重力环境中物质运动的规律,以及不同重力环境中重力对物质运动的影响.中国微重力科学研究起步于20世纪60年代,兴起于80年代中后期,经过多年发展,目前已初具规模,在一些重要方向具有明显特色和一定优势.本文回顾了中国微重力科学研究的早期历程,评述了近年来中国微重力科学研究进展,特别是利用实践十号科学实验卫星、天宫二号空间实验室等空间平台开展的微重力科学与技术应用研究取得的最新成果,并对中国载人空间站时代微重力科学发展的前景予以瞻望,推动微重力科学与应用研究在中国的快速、可持续发展.   相似文献   

7.
静电悬浮加速度计地面高压悬浮原理与应用   总被引:1,自引:0,他引:1  
静电悬浮加速度计是进行空间飞行器准稳态非重力精密测量的设备。静电悬浮加速度计研制中,需要借助高压悬浮来完成其功能和部分性能评价的相关工作。文章就地面静电悬浮加速度计检验质量高压悬浮中涉及的相关问题进行了理论分析,给出了地面悬浮原理、高压电路实现形式、工作点选取、稳定性控制、高压静电力作用分析等,给出了实际试验结果,表明地面上系统在0.1Hz附近具有10-8gn/Hz1/2左右的分辨率,并可在悬浮状态下,完成功能及相关性能测试,获得静电悬浮加速度计地面直接性能评价受限的主要因素,同时就存在的问题进行了讨论。  相似文献   

8.
9.
An experiment using plant protoplasts has been accepted for the IML-1 Space Shuttle mission scheduled for 1991. Preparatory experiments have been performed using both fast and slow rotating clinostats and in orbit to study the effect of simulated and real weightlessness on protoplast regeneration. Late access to the space vehicles before launch has required special attention since it is important to delay cell wall regeneration until the samples are in orbit. On a flight on Biokosmos 9 ("Kosmos-2044") in September 1989 some preliminary results were obtained. Compared to the ground control, the growth of both carrot and rapeseed protoplasts was decreased by 18% and 44% respectively, after 14 days in orbit. The results also indicated that there is less cell wall regeneration under micro-g conditions. Compared to the ground controls the production of cellulose in rapeseed and carrot flight samples was only 46% and 29% respectively. The production of hemicellulose in the flight samples was 63% and 67% respectively of that of the ground controls. In both cases all samples reached the stage of callus development. The peroxidase activity was also found to be lower in the flight samples than in the ground controls, and the number of different isoenzymes was decreased in the flight samples. In general, the regeneration processes were retarded in the flight samples with respect to the ground controls. From a simulation experiment for IML-1 performed in January 1990 at ESTEC, Holland, regenerated plants have been obtained. These results are discussed and compared to the results obtained on Biokosmos 9. Protoplast regeneration did not develop beyond the callus stage in either the flight or the ground control samples from the Biokosmos 9 experiment.  相似文献   

10.
In the past two years, China's space life science has made great progress. Space biomedical and life science programs have carried out ground-based research for the first batch of projects, and are preparing to carry out space-based experiments along with the construction of China's space station. And space life science payload of the space station completed the development of positive samples. Thus, with the development of lunar exploration and Mars exploration projects, astrobiology research has also made a lot of basic achievements. On the basis of summarizing the development of space life science in China, this paper mainly introduces the important progress of payload technology and life science research.   相似文献   

11.
地面入射的大功率高频无线电波(泵波)和电离层等离子体之间的参数相互作用,能够引起静电波的激发,在一定条件下,产生不稳定性.本文用PIC静电粒子模拟方法,研究泵波与赤道电离层E区等离子体的相互作用.研究结果表明,泵波能够控制双流不稳定性的发生,在不同条件下,泵波对双流不稳定性起着稳定与不稳作用,模拟结果定性地与理论研究结果相符合,这为我们对不规则体产生的地面人工控制提供了依据.  相似文献   

12.
Preparatory experiments for the IML-1 mission using plant protoplasts, were flown on a 14-day flight on Biokosmos 9 in September 1989. Thirty-six hours before launch of the biosatellite, protoplasts were isolated from hypocotyl cells of rapeseed (Brassica napus) and suspension cultures of carrot (Daucus carota). Ultrastructural and fluorescence analysis of cell aggregates from these protoplasts, cultured under microgravity conditions, have been performed. In the flight samples as well as in the ground controls, a portion of the total number of protoplasts regenerated cell walls. The processes of cell differentiation and proliferation under micro-g did not differ significantly from those under normal gravity conditions. However, in micro-g differences were observed in the ultrastructure of some organelles such as plastids and mitochondria. There was also an increase in the frequency of the occurrence of folds formed by the plasmalemma together with an increase in the degree of complexity of these folds. In cell cultures developed under micro-g conditions, the calcium content tends to decrease, compared to the ground control. Different aspects of using isolated protoplasts for clarifying the mechanisms of biological effects of microgravity are discussed.  相似文献   

13.
Human exposure to ionizing radiation is one of the acknowledged potential showstoppers for long duration manned interplanetary missions. Human exploratory missions cannot be safely performed without a substantial reduction of the uncertainties associated with different space radiation health risks, and the development of effective countermeasures. Most of our knowledge of the biological effects of heavy charged particles comes from accelerator-based experiments. During the 35th COSPAR meeting, recent ground-based experiments with high-energy iron ions were discussed, and these results are briefly summarised in this paper. High quality accelerator-based research with heavy ions will continue to be the main source of knowledge of space radiation health effects and will lead to reductions of the uncertainties in predictions of human health risks. Efforts in materials science, nutrition and pharmaceutical sciences and their rigorous evaluation with biological model systems in ground-based accelerator experiments will lead to the development of safe and effective countermeasures to permit human exploration of the Solar System.  相似文献   

14.
A wide variety of technical and science questions arise when attempting to envision the long-term support of plants, algae and bacteria in space. Currently, spaceflight data remain elusive since there are no U.S. carriers for investigating either the germane technical or scientific issues. The first flight of the Commercial Experiment Transporter (COMET) will provide a nominal 30 day orbital opportunity to evaluate such issues. The P-MASS is a small payload that is designed to meet the mass (40 lbs.), volume (1.5 cu.ft.), and power (120 W) constraints of one of several COMET payloads while enabling flight evaluations of plants, algae and bacteria. Various P-MASS subsystems have been subjected to extensive ground tests as well as KCl35 tests. Various biological sub-systems have been similarly evaluated. Through a variety of sensors coupled with color video, the P-MASS performance and the supported biological systems will be compared for terrestrial controls versus spaceflight materials. This small, low cost payload should return valuable information regarding the requirements for hardware and biological systems needed to move toward bioregenerative life support systems in space. In addition, it should be possible to accurately identify major unresolved difficulties that may arise in the long-term, spaceflight support of various biological systems. Finally, this generic spaceflight capability should enable a variety of plant research programs focused on the use of microgravity to modulate and exploit plant products for commercial applications ranging from new agricultural products to pharmacological feedstocks and new controlled agricultural strategies.  相似文献   

15.
在未知材料化学成分和性能关系的情况下,通过传统的“试错-纠错”方法研发具有特定功能的新材料成本高且经常失败。随着人工智能和数据驱动的第四科学范式的发展,材料基因工程(MGE)已经成为材料设计与研发的新模式。综述了材料基因工程中高通量计算、材料数据库和人工智能方法的研究进展。介绍了材料高通量计算常用的框架和方法; 阐述了材料数据库在材料数据类型和数据标准两方面的发展现状和有待解决的难题; 总结了人工智能方法在材料关键基础问题中的应用。从高通量可视化计算方法、材料多类型数据库和可视化机器学习框架三方面重点证述了自主开发的多尺度集成可视化的高通量自动计算和数据管理智能平台ALKEMIE。展望了材料基因工程未来的发展趋势。   相似文献   

16.
SPACE CHEMISTRY RESEARCHES IN CHINA DURING 2000-2001   总被引:1,自引:0,他引:1  
Over the past two years, significant progress in space chemistry has been made in China. The research fields include meteorites, pre-solar materials, science researches of the moon, effects of the space debris on space environment, and heterogeneity of the Earth. Chinese Lunar Exploration Project Some studies are also dedicated to one important space mission "Chinese Lunar Exploration Project". In this paper, the main achievements are outlined, and some concepts and hypotheses are briefly revised.  相似文献   

17.
The Frequency Agile Solar Radiotelescope (FASR), a telescope concept currently under study, will be a ground based solar-dedicated radio telescope designed and optimized to produce high resolution, high-fidelity, and high-dynamic-range images over a broad frequency range (0.1–24 GHz). As such, FASR will address an extremely broad science program, including the nature and evolution of coronal magnetic fields, the physics of flares, drivers of space weather, and the quiet Sun. An important goal is to mainstream solar radio observations by providing a number of standard data products for use by the wider solar physics community. The instrument specifications and the key science elements that FASR will address are briefly discussed, as well as several operational issues.  相似文献   

18.
We present BAX, Base de Données amas de galaxies X (http://webast.ast.obs-mip.fr/bax), a project aiming at building a comprehensive database dedicated to X-rays clusters of galaxies allowing detailed information retrieval. BAX provides the user with basic data published in the literature on X-rays clusters of galaxies as well as with information concerning the physical properties in the X-rays domain or at other wavelengths. BAX allows individual studies on selected clusters as well as building up homogenous samples, from known X-rays clusters for which selection criteria are chosen through web interfaces. We expect BAX to become a useful tool for astronomy community in order to optimize the cluster science return using data from both ground based facilities like MEGACAM (CFHT), VIRMOS (VLT) and space missions like XMM, Chandra and Planck.  相似文献   

19.
Chang'E-1, the first lunar mission in China, was successfully launched on October 24,2007, which opened the prelude of China's Lunar Exploration Program. Later on, the Chang'E-2 and Chang'E-3 satellites were successfully launched in 2010 and 2013, respectively. In order to achieve the science objectives, various payloads boarded the spacecraft. The scientific data from these instruments were received by Beijing and Kunming ground stations simultaneously. Up to now, about 5.628 Terabytes of raw data were received totally. A series of research results has been achieved. This paper presents a brief introduction to the main scientific results and latest progress from Chang'E-3 mission.  相似文献   

20.
Quantum Science Satellite is one of the first five space science missions, slated for launch in the framework of Chinese Academy of Sciences (CAS) Strategic Priority Research Program on space science. The project aims to establish a space platform with long-distance satellite and ground quantum channel, and carry out a series of tests about fundamental quantum principles and protocols in space-based large scale. The satellite will be launched at Jiuquan and on orbit for 2 years. The orbit will be circular and Sun-synchronous with an altitude of 600km. It crosses the descending node at 00:00LT. The satellite is under early prototype development currently.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号