首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
纳米压痕实验微米级深度硬度下降现象的研究(英文)   总被引:2,自引:1,他引:1  
本文针对均匀材料微米级压痕深度,分析接触深度、接触面积、载荷以及加载时间几种因素对实验数据的影响,结合有限元数值模拟,说明压头几何缺陷、接触深度与接触面积的处理并不是造成微米级压痕硬度随压深增大而下降的主要原因,最可能的原因是材料的蠕变特性。进行了不同最大压深实验显示连续刚度法(CSM)将强化蠕变特性对硬度曲线的影响,证明造成该现象的重要原因是纳米压痕实验的实验方法问题。  相似文献   

2.
为了研究微纳米尺度下单晶锗的力学特性,采用纳米压痕仪对单晶锗(100)(110)和(111)晶面进行了纳米压痕实验,并通过原子力显微镜对材料表面进行了观测。根据单晶锗各晶面的位移-载荷曲线,对单晶锗各晶面的弹性回复率、硬度、弹性模量与压入深度之间的关系进行了分析。结果表明:单晶锗在加载过程中分别经历了弹性变形、塑性变形和脆性变形三个阶段。当压入深度超过500 nm时,加载曲线上有突进点产生;当压入深度超过100 nm时,卸载曲线上有突退点产生。单晶锗的残余压痕形貌表现为凸起状,表明单晶锗具有较低的加工硬化趋势。当压入深度达到100 nm时,单晶锗表现出明显的尺寸效应,且单晶锗(111)晶面具有最低硬度和弹性模量值。表明相对于其他两个晶面,单晶锗(111)晶面具有更好的塑性变形能力。  相似文献   

3.
单晶铝纳米级硬度试验研究   总被引:1,自引:0,他引:1  
使用纳米硬度计对单晶铝进行了纳米压痕试验,利用原子力显微镜对压痕形貌进行扫描并计算硬度值,重点观察和分析了纳米级条件下单晶铝的硬度性质,结果表明,当压痕深度小于2000nm时,单晶铝纳米硬度存在尺寸效应现象;从材料性质的角度分析了纳米硬度尺寸效应现象;探讨了纳米硬度和传统硬度本质上的区别,指出其根本原因在于不同尺度下人们对材料性质的关注点不同。  相似文献   

4.
纳米力学探针的基本原理及其应用实例   总被引:4,自引:0,他引:4  
介绍了一种新型的材料微区力学性能检测系统NanoIndenterII纳米显微力学探针。纳米显微力学探针是一个压入系统 ,其实验过程全部由计算机控制 ,压头的位移精度可达到 +/ - 0 .0 4nm ,因此可以研究材料的微区力学性能 ,它更适合于分析各种镀膜材料、离子注入材料、表面改性等材料的硬度分布及其弹性模量。它与显微硬度计的最大差别在于它能连续记录载荷 位移数据 ,通过载荷 位移数据计算材料微区的硬度和弹性模量 ,而不需要通过光学方法测定压痕面积 ,因此避免了测量和材料弹性恢复引入的误差。本文阐述了它的实验原理、硬度及弹性模量的计算方法并列举了它在材料科学中的应用  相似文献   

5.
介绍了微压痕法在航空铝合金材料力学性能检测的研究.采用球形压头通过多级循环加载方法得到了5083铝合金材料压痕深度与载荷的关系,将微压痕数据输入经过充分训练的人工神经网络模型,计算出材料力学性能参数和材料应力应变曲线,对压痕法测量得到的材料真应力应变曲线与拉伸试验得到的结果进行了比较.  相似文献   

6.
层合板准静态压痕损伤分析   总被引:1,自引:0,他引:1  
对复合材料层合板进行了横向静态压痕试验,得到了载荷-位移曲线.依据曲线上的位移值,采用九节点壳单元、三维Tsai-Wu失效判和损伤层刚度折减方法,对准静态压痕损伤进行了计算,并与超声C扫描压痕损伤检测图像做了比较.结果表明,损伤仿真与实际损伤检测图一致性好.  相似文献   

7.
给出了基于纳米硬度试验的表层薄膜的硬度测算方法。首先研究如何利用有限元计算弥补纳米硬度测量在压痕深度小于百纳米时的精度缺陷,进而探讨薄膜一基体材料系统的硬度随压痕深度变化的规律,最后导出了根据实验曲线预测表层薄膜材料的硬度的公式,并进行了实验验证。  相似文献   

8.
阐述了一种纳米尺度下测试材料显微硬度的试验方法——深度硬度试验法。并研制了深度硬度试验装置,采用压电陶瓷传感器实现微位移和激光测试超低载荷,该试验装置分辨率高,可以实现纳米级压痕的显微硬度测试。  相似文献   

9.
给出了基于纳米硬度试验的二层薄膜的硬度测算方法。首先利用有限元方法探讨了二层薄膜一基体材料系统的硬度随压痕深度变化的规律,进而推导和验证了材料系统硬度一位移曲线的拟合公式,最后给出了以压痕实验为基础的二层薄膜材料硬度的计算公式。  相似文献   

10.
TC21钛合金喷丸强化层微观组织结构及性能变化   总被引:2,自引:0,他引:2  
采用透射电子显微镜、X射线衍射仪和纳米压痕仪对TC21钛合金表面喷丸强化层内的微观结构和纳米压痕力学性能进行了研究。结果表明,TC21钛合金表面经喷丸强化后,在表层形成一个弹塑性变形层。强化过程中由于密排六方晶体的基面、柱面和锥面滑移系的开动,造成位错密度升高,α相中位错形貌呈现网状;强化前纳米压痕硬度为3.2GPa,强化后为6.7GPa,提高1倍以上。在强化层内形成很高的宏观残余压应力,并且表现为由表面向里逐渐减少的梯度变化。强化层深度达到370μm。  相似文献   

11.
表层材料硬度检测及结果的对比分析   总被引:5,自引:0,他引:5  
针对表层材料硬度检测中常用的几种显微硬度仪以及近年来发展的同乡会米压痕技术,对比分析了各种硬度仪的特点及其使用范围,着重指出了显微硬度仪与纳米压痕仪的定义在物理本质上的差别。最后针对最常用的维氏显微硬仪与目前先进的纳米压痕技术,利用有限元数值模拟并结合纳米压痕实验数据,给出了两种硬度值在数量上的关系。  相似文献   

12.
通过搅拌摩擦焊接头硬度测试,确定了焊缝两侧软化区分布区域;在软化区埋设热电偶,进行搅拌摩擦焊接实验,检测不同测温点的热循环曲线。将焊后接头进行硬度测试,确定硬度最低点位置,对应测温孔分布位置,获得软化区硬度最低点热循环曲线。  相似文献   

13.
Nanoindentation testing and its Reverse Analysis Method(RAM) show great potential in understanding the tensile properties of metallic alloys with various microstructures. Nevertheless,the tensile properties of heterogeneous materials such as nickel-based superalloy welded joints have not been well interpreted by combining the microstructures and nanoindentation results, due to their diverse and complex microscopic zones, which throws shade on the properties of separated zones in the material. He...  相似文献   

14.
王赵鑫  赵宏伟 《航空学报》2021,42(10):524815-524815
近年来,具有高精度、高通量的微纳米压痕测试技术,已被广泛应用于研究微/纳米尺度下材料力学性能演化规律和变形行为中。然而,在航空航天材料试验测试领域,令研究人员更感兴趣的往往是如何更好地揭示材料工程性能,更好地理解材料在服役环境下变形损伤机制。因此,接近材料真实服役环境(如高/低温、电/磁场)下的微纳米压痕测试系统更具应用潜力。首先对传统的微纳米压痕测试技术进行回顾总结,涉及测试系统的组成、经典分析理论方法及其面临的尺度/尺寸效应。然后,简要描述典型磁电弹性材料在力-电-热-磁多场耦合环境下接触力学行为的解析模型,并着重阐述面向材料实际服役环境下的压痕测试技术的典型应用,包括高/低温纳米压痕测试和电/磁场耦合条件下的纳米压痕测试应用。最后,讨论了目前发展所面临的主要问题和挑战,这对微纳米压痕测试技术的进一步发展和先进应用具有重要意义。  相似文献   

15.
王存 《推进技术》2021,42(6):1372-1379
为解决对转双转子航空发动机临界转速求解的难题,满足转子动力学设计需求,结合商业有限元软件,给出直接法和完全法两种临界转速求解方法,并结合算例详细论述了方法的理论基础和求解过程,最终以谐响应分析结果加以验证。研究结果表明:基于商业有限元软件特征值分析的完全法不需要任何振型信息,就可对正反进动曲线进行区分,极大简化了对转双转子系统临界转速的求解过程,而由有限元软件生成矩阵后进行处理并计算的直接法不需迭代,可由一次特征值求解得到全部临界转速。某双转子系统临界转速的计算结果表明,直接法、完全法和谐响应分析的结果完全一致。双转子对转时,正进动临界转速曲线随非激励源转子的转速绝对值增加而降低,使临界转速分布规律区别于同转转子,其动力特性需予以细致考虑。  相似文献   

16.
为了将薄膜本征硬度从所测复合硬度中提取出来,目前有很多计算或描述的模型和方程。本文介绍了目前提出的计算薄膜硬度的方法和模型,对各方法和模型进行了分析比较,并对其未来发展方向进行了展望。  相似文献   

17.
徐明 《航空计测技术》2011,(3):44-45,51
介绍了ISO6507金属材料维氏硬度试验方法的测量不确定度评定,并针对两种评定方法分别给出了评定实例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号