首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current emphasis on designing flexible manufacturing systems, particularly in the electronics manufacturing industry, is bringing automation and robotics technologies to the factory at increasing rates. The rate of advance in these technologies raises serious concerns among engineers and managers about how to proceed in building modern manufacturing systems. A large portion of this uncertainty results from the difficulty of fitting technological advances into the existing models of manufacturing. What is needed is a new framework within which to perceive automation and robotics which will permit the adoption of more encompassing design strategies and principles to be followed in the practice of modernizing and maintaining advanced electronics manufacturing systems. This paper provides a framework that might be adopted to structure new strategies for incorporating automation and robotics in manufacturing. The approach is one that we at SRI have found useful in considering automation and robotics issues for the NASA Space Station and other complex systems which need to incorporate new technologies throughout long lifetimes. These same issues are becoming increasingly important in electronics manufacturing system design and development.  相似文献   

2.
The Space Station Freedom was, from the mid-1980's through 1993, the design for an international orbiting laboratory facility. The Space Station Freedom was comprised of “utility” systems, such as power generation and distribution, thermal management, and data processing, and “user” systems such as communication and tracking, propulsion, payload support, and guidance, navigation, and control. These systems are required to work together to provide various station functions. To protect the lives onboard and the investment in the station, the systems and their connectivity had to be designed to continue to support critical functions after any single fault for early assembly stages, and after any two faults for later stages. Of these critical functions, attitude control was the most global, incorporating equipment from nearly all major systems. The challenge was to develop an architecture, or integration, of these systems that would achieve the specified level of fault tolerant attitude control and operate, autonomously, for the three-month unmanned periods during the assembly process. Additionally, this architecture had to maintain the desired utility of the station for each stage of the assembly process. This paper discusses the approach developed for integrating the systems such that the fault tolerance requirements were met for all stages of assembly. Some of the key integration issues are examined and the role of analysis tools are described. The resultant design was a highly channelized one, and the reasons and the benefits of this design will be explored. The final design was accepted by the Space Station Control Board as the design baseline in July 1992  相似文献   

3.
The scheduling of crew rotations for up to 180 days on Space Station Freedom presents a special challenge for behavioral scientists who are tasked with providing psychological support for the crews, their families, and mission flight controllers. Preflight psychological support planning may minimize the negative impact of psychological and social issues on mission success, as well as assist NASA management in making real-time mission planning decisions in the event of a significant social event (for example, the death of a family member). During flight, the combined psychological, emotional, and social stressors on the astronauts must be monitored, along with other aspects of their health. The Health Maintenance Facility (HMF) will have the capability of providing preventive, diagnostic, and therapeutic assistance for significant psychiatric and interpersonal problems which may develop. Psychological support will not end with the termination of the mission. Mental health professionals must be part of the team of medical personnel whose job will be to facilitate the transition--physical and mental--from the space environment back to planet Earth. This paper reviews each phase of mission planning for Space Station Freedom and specifies those factors that may be critical for psychological health maintenance on extended-duration space missions.  相似文献   

4.
提出了智能飞机的定义以及智能飞机所具备的状态感知、记忆学习、自主控制和规划、行为决策、自然人机交互以及空地一体化维护管理六项特征。基于智能飞机的特征,提出了面向飞行机组的智能驾驶技术、面向乘客的智能客舱技术以及面向机务的智能维护技术,并分别对智能驾驶技术、智能客舱技术以及智能维护技术进行了介绍,重点介绍了实现智能驾驶所依托的PBN、ADS-B等关键技术。本文的研究对未来智能飞机的设计具有重要的指引作用和研究意义。  相似文献   

5.
The space shuttle external tank, which consists of a liquid oxygen tank, an intertank structure, and a liquid hydrogen tank, is an expendable structure used for approximately 8.5 min during each launch. A concept for outfitting the liquid oxygen tank-intertank unit for a 12-person lunar habitat is described. The concept utilizes existing structures and openings for both man and equipment access without compromising the structural integrity of the tank. Living quarters, instrumentation, environmental control and life support, thermal control, and propulsion systems are installed at Space Station Freedom. The unmanned habitat is then transported to low lunar orbit and autonomously soft landed on the lunar surface. Design studies indicate that this concept is feasible by the year 2000 with concurrent development of a space transfer vehicle and manned cargo lander for crew changeover and resupply.  相似文献   

6.
In preparation for the International Space Station, the Enhanced Dynamic Load Sensors Space Flight Experiment measured the forces and moments astronauts exerted on the Mir Space Station during their daily on-orbit activities to quantify the astronaut-induced disturbances to the microgravity environment during a long-duration space mission. An examination of video recordings of the astronauts moving in the modules and using the instrumented crew restraint and mobility load sensors led to the identification of several typical astronaut motions and the quantification of the associated forces and moments exerted on the spacecraft. For 2806 disturbances recorded by the foot restraints and hand-hold sensor, the highest force magnitude was 137 N. For about 96% of the time, the maximum force magnitude was below 60 N, and for about 99% of the time the maximum force magnitude was below 90 N. For 95% of the astronaut motions, the rms force level was below 9.0 N. It can be concluded that expected astronaut-induced loads from usual intravehicular activity are considerably less than previously thought and will not significantly disturb the microgravity environment.  相似文献   

7.
Multibody dynamics and robust control of flexible spacecraft   总被引:1,自引:0,他引:1  
The paper focuses on an approach to the study of the dynamics and control of large flexible space structures, comprised of subassemblies, a subject of considerable contemporary interest. To begin with, a relatively general Lagrangian formulation of the problem is presented. The governing equations are nonlinear, nonautonomous, coupled, and extremely lengthy even in matrix notation. Next, an efficient computer code is developed and the versatility of the program illustrated through a dynamical study of the first element launch (FEL) configuration of the Space Station Freedom, now superseded by the International Space Station. Finally, robust control of the rigid body motion of the FEL configuration using both the linear-quadratic-Gaussian/loop transfer recovery (LQG/LTR) and H procedures is demonstrated. The controllers designed using the simplified linear models, prove to be effective in regulating librational disturbances. Such a global approach-formulation numerical code, dynamics, and control-is indeed rare. It can serve as a powerful tool to gain comprehensive understanding of dynamical interactions and thus aid in the development of an effective and efficient control system  相似文献   

8.
This paper provides an overview of the Space Station configuration and summarizes the requirements, architecture, and significant challenges associated with the electrical power system (EPS). The Space Station configuration was baselined during the systems design review (SDR) process in March, 1994. The current configuration includes the addition of Russia as an international partner, resulting in major changes to the assembly sequence, pressurized module complement, and overall power architecture. The Russian contributions to the power system architecture, as well as an-overview and development status of the US provided elements is presented. Finally, a planned flight demonstration of solar dynamic power system on the Mir as part of the first phase of US/Russian cooperation in human space flight is described  相似文献   

9.
孟光  韩亮亮  张崇峰 《航空学报》2021,42(1):523963-523963
空间机器人是实现空间操控自动化和智能化的使能手段之一,在无人及载人的空间科学探索活动中至关重要。首先,回顾了国际空间站舱内外机器人、中国空间站机器人、在轨自由飞行空间机器人等几类轨道空间机器人工程应用现状,以及已成功在轨应用月面机器人和火星机器人两类星表机器人系统的应用现状。其次,针对空间机器人后续日益复杂的任务需求,探讨了空间机器人在机构构型、关节驱动、末端操作、感知认知、行走移动、动力学与控制等方面面临的技术挑战。然后,论述了空间机器人在多臂、超冗余、柔性化、可重构、仿生等新型机构构型方面的探索,介绍了空间机器人主动、被动柔顺关节方面的研究进展,论述了空间机器人末端执行器在专用化工具及通用化多指灵巧手两个方向的研究进展,总结了星表机器人在新型移动机构构型、高自主导航方面的研究进展,介绍了空间机器人在多传感器集成融合、力与触觉感知方面的研究进展,论述了空间机器人在多臂协调控制、柔顺控制、漂浮基座抓捕动力学控制等方面的研究进展。最后,展望了空间机器人在空间目标抓捕与移除、高价值飞行器在轨服务与维修、空间大型构件在轨组装及星球科学探测等方面的应用前景。  相似文献   

10.
11.
陈斌  王江  王阳 《航空学报》2020,41(6):523467-523467
智能化"实虚"对抗是现代先进战斗机嵌入式训练系统的重要功能需求。自主空战决策控制技术在未来空战装备发展中扮演关键角色。将当前的功能需求和发展中的技术结合起来,得到了空战智能虚拟陪练的概念。先进控制决策技术的引入使得智能虚拟陪练能够帮助飞行员完成复杂的战术训练,而训练中真实的对抗场景为技术的验证提供了理想的环境,大量的训练数据为技术的持续迭代优化提供了保障。作为可学习和进化的空战战术专家,智能陪练在人机对抗和自我对抗中不断优化,当其具备与人相当甚至超越人的战术能力时,可应用于未来的无人空战系统。智能虚拟陪练需要具备4项基本能力:智能决策能力、知识学习能力、对抗自优化能力和参数化表示能力。对其包含的关键技术进行了分析,提出并实现了一个基于模糊推理、神经网络和强化学习的解决方案,展示了其各项基本能力及目前达到的空战水平。未来更多的模型和算法可在智能虚拟陪练的框架中进行验证和优化。  相似文献   

12.
The design of Space Station Freedom's electric power system (EPS) is reviewed, highlighting the key design goals of performance, low cost, reliability, and safety. The EPS design is divided into three separate areas: power generation and storage, power distribution, and power management and control. Both photovoltaic and solar dynamic power generation and storage systems are used. Tradeoff study results that illustrate the competing factors responsible for many of the more important design decisions are discussed. Reliability and maintainability, as well as verification and testing, are addressed  相似文献   

13.
The Electric Power System (EPS) being built for the International Space Station has undergone several significant changes over the last year, as major design decisions have been made for the overall station. While the basic topology and system elements have remained the same, there are important differences in connectivity, assembly sequence, and start-up. The key drivers for these changes in architecture have been the goal to simplify verification, and most significantly, the introduction of extensive Russian participation in the program. Having the Russians join the international community in this project has resulted in an expanded station size, larger crew, and almost doubled the observable surface of the Earth covered by the station. For the power system it has meant additional interfaces for power transfer, and new challenges for solar tracking at the higher inclination orbit. This paper reviews the current architecture and emphasizes the new features that have evolved, as the design for the new, larger station has developed. Additionally, the possible application of developing technology to the station, and other future missions is considered  相似文献   

14.
Effective thermal control systems are essential for reliable operation of spacecraft.A dual-driven intelligent combination control strategy is proposed to improve the temperate control and heat flux tracking effects.Both temperature regulation and heat flux tracking errors are employed to generate the final control action;their contributions are adaptively adjusted by a fuzzy fusing policy of control actions.To evaluate the control effects,describe a four-nodal mathematical model for analyzing the dynamic characteristics of the controlled heat pipe space cooling system(HP-SCS) consisting of an aluminum-ammonia heat pipe and a variable-emittance micro-electromechanical-system(MEMS) radiator.This dynamical model calculates the mass flow-rate and condensing pressure of the heat pipe working fluid directly from the systemic nodal temperatures,therefore,it is more suitable for control engineering applications.The closed-loop transient performances of four different control schemes have been numerically investigated.The results conclude that the proposed intelligent combination control scheme not only improves the thermal control effects but also benefits the safe operation of HP-SCS.  相似文献   

15.
The Space Station will bring a great increase in rendezvous traffic. Formerly, rendezvous has been expensive in terms of time and crew involvement. Multiple trajectory adjustments on separate orbits have been required to meet safety, lighting, and geometry requirements. This paper describes a new guidance technique in which the approach trajectory is shaped by a sequence of velocity increments in order to satisfy multiple constraints within a single orbit. The approach phase is planned before the mission, leaving a group of free parameters that are optimized by onboard guidance. Fuel penalties are typically a few percent, compared to unshaped Hohmann transfers, and total fuel costs can be less than those of more time-consuming ways of meeting the same requirements.  相似文献   

16.
机载导弹火控系统误差分析研究   总被引:4,自引:0,他引:4  
论述了某型号飞机导弹火控系统精度误差分析理论和此误差分析系统的软件设计,给出了某型飞机导弹火控系统精度的数据模型和误差分析方法,从程度设想,软件结构设计,软件结构图和程序流程图诸方面对误差分析系统软件设计作了细致地分析和说明,该误差分析软件已成功地应用于某导弹火控系统精度试飞中,其设计经验可供有关人员借鉴和参考。  相似文献   

17.
As the Earth-orbit International Space Station (ISS) grows, it needs more power which is generated by solar panels. For periods in which the planet Earth occults sunlight, energy is stored in the biggest set of batteries ever flown in space. Reliability of power is important in a space station because a failure requires costly launch of replacement components. Even greater importance results when astronauts work in the station. A power failure that causes the astronauts to perish would be a very serious event. The first battery-containing "integrated equipment module" was launched November 30, 2000 and installed on port 6 of the International Space Station. Two more modules will be launched by the United States; to be launched in 2004 is the European Space Agency's "attached COLUMBUS APM laboratory," which will have its own power system. Unexpected battery-related events occurred in the integrated equipment module during its first year-and-a-half in orbit. The problems and their solutions were described in papers presented at the 37/sup th/ Intersociety Energy Conversion Engineering Conference. Since the International Space Station carries more battery cells than any other spacecraft, the in-flight performance data from its battery assembly can be useful to engineers who design power supplies for other spacecraft. We, therefore, summarize the battery development process, the adopted design, and an unexpected in-flight battery degradation and its correction.  相似文献   

18.
A Space Station Task Force was established by NASA in May 1982 to provide focus and direction for space station planning activities. The Task Force also provides Congress and the Administration with sufficient information to allow them to make an informed decision on whether the United States should proceed with a space station as the next major national initiative in space. This paper presents the status of planning activities to date, with major emphasis on the power system, and discusses technology options, power requirements, and schedule.  相似文献   

19.
Artificial Intelligence (AI) will play a major role in future spacecraft operation. Because the technology has not matured, knowledge-based systems will be incorporated in an evolutionary manner, with increasing responsibility as their performance is proven. Internal research at Boeing Aerospace Company has demonstrated that AI software development techniques, knowledge-based systems in particular, can be used to provide limited spacecraft subsystem automation. This capability represents a first step toward an evolutionary path to spacecraft automation. A likely progression will proceed to integrated subsystem control, automated planning and scheduling, plan execution, anomoly handling, and eventually to autonomous spacecraft operation. Although this paper is written in the context of Space Station the ideas and techniques identified should be easily transferable to spacecraft automation in general.  相似文献   

20.
《Air & Space Europe》1999,1(1):45-47
In spite of the common requirement for civil flight deck crew to rapidly and effectively manage failures, there are significant differences in the design of electronic warning systems (EWS) and the failure management tools available to the crew of the flagship aircraft of the three major civil manufacturers. This paper reports early findings of an ongoing research programme addressing some of the human factors issues of these designs. The paper overviews certain characteristics of these designs, in particular the distribution of control between crew and automation over system functions. The paper concludes that these differences reflect implicit assumptions about the role of the pilot which should be made explicit, and suggests that direct control over failure resolution may be less important than awareness of system state. It is suggested that new perspectives on design may be required to support the further development of EWS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号