首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The scheduling of crew rotations for up to 180 days on Space Station Freedom presents a special challenge for behavioral scientists who are tasked with providing psychological support for the crews, their families, and mission flight controllers. Preflight psychological support planning may minimize the negative impact of psychological and social issues on mission success, as well as assist NASA management in making real-time mission planning decisions in the event of a significant social event (for example, the death of a family member). During flight, the combined psychological, emotional, and social stressors on the astronauts must be monitored, along with other aspects of their health. The Health Maintenance Facility (HMF) will have the capability of providing preventive, diagnostic, and therapeutic assistance for significant psychiatric and interpersonal problems which may develop. Psychological support will not end with the termination of the mission. Mental health professionals must be part of the team of medical personnel whose job will be to facilitate the transition--physical and mental--from the space environment back to planet Earth. This paper reviews each phase of mission planning for Space Station Freedom and specifies those factors that may be critical for psychological health maintenance on extended-duration space missions.  相似文献   

2.
Space Station Freedom solar array design development   总被引:1,自引:0,他引:1  
The solar array design is reviewed, highlighting the key design performance goals and problems. The design is described, and development testing objectives, results, and plans are examined. Study results that illustrate many of the more important design decisions are discussed  相似文献   

3.
4.
This paper provides an overview of the Space Station configuration and summarizes the requirements, architecture, and significant challenges associated with the electrical power system (EPS). The Space Station configuration was baselined during the systems design review (SDR) process in March, 1994. The current configuration includes the addition of Russia as an international partner, resulting in major changes to the assembly sequence, pressurized module complement, and overall power architecture. The Russian contributions to the power system architecture, as well as an-overview and development status of the US provided elements is presented. Finally, a planned flight demonstration of solar dynamic power system on the Mir as part of the first phase of US/Russian cooperation in human space flight is described  相似文献   

5.
The Space Station Freedom was, from the mid-1980's through 1993, the design for an international orbiting laboratory facility. The Space Station Freedom was comprised of “utility” systems, such as power generation and distribution, thermal management, and data processing, and “user” systems such as communication and tracking, propulsion, payload support, and guidance, navigation, and control. These systems are required to work together to provide various station functions. To protect the lives onboard and the investment in the station, the systems and their connectivity had to be designed to continue to support critical functions after any single fault for early assembly stages, and after any two faults for later stages. Of these critical functions, attitude control was the most global, incorporating equipment from nearly all major systems. The challenge was to develop an architecture, or integration, of these systems that would achieve the specified level of fault tolerant attitude control and operate, autonomously, for the three-month unmanned periods during the assembly process. Additionally, this architecture had to maintain the desired utility of the station for each stage of the assembly process. This paper discusses the approach developed for integrating the systems such that the fault tolerance requirements were met for all stages of assembly. Some of the key integration issues are examined and the role of analysis tools are described. The resultant design was a highly channelized one, and the reasons and the benefits of this design will be explored. The final design was accepted by the Space Station Control Board as the design baseline in July 1992  相似文献   

6.
As the Earth-orbit International Space Station (ISS) grows, it needs more power which is generated by solar panels. For periods in which the planet Earth occults sunlight, energy is stored in the biggest set of batteries ever flown in space. Reliability of power is important in a space station because a failure requires costly launch of replacement components. Even greater importance results when astronauts work in the station. A power failure that causes the astronauts to perish would be a very serious event. The first battery-containing "integrated equipment module" was launched November 30, 2000 and installed on port 6 of the International Space Station. Two more modules will be launched by the United States; to be launched in 2004 is the European Space Agency's "attached COLUMBUS APM laboratory," which will have its own power system. Unexpected battery-related events occurred in the integrated equipment module during its first year-and-a-half in orbit. The problems and their solutions were described in papers presented at the 37/sup th/ Intersociety Energy Conversion Engineering Conference. Since the International Space Station carries more battery cells than any other spacecraft, the in-flight performance data from its battery assembly can be useful to engineers who design power supplies for other spacecraft. We, therefore, summarize the battery development process, the adopted design, and an unexpected in-flight battery degradation and its correction.  相似文献   

7.
A utility-type, 20-kHz, AC power distribution system for the space station employing resonant power-conversion techniques is presented. The system converts raw DC voltage from photovoltaic cells or three-phase, low-frequency AC voltage from a solar dynamic generator into a regulated, 20-G kHz AC voltage for distribution among various loads. Operations of the components of the system such as driver inverter, DC receiver, bidirectional receiver, and three-phase AC receiver are discussed. EASY5 computer modeling and simulations were performed to study the local and global performance of the system. Simulation results show that the system has fast response and good transient behavior. The AC bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the outputs of driver modules is illustrated with the driver modules synchronized and sharing a common feedback loop. A high-frequency, sinusoidal AC voltage is generated in the three-phase, AC input case, when the driver modules are phased 120° away from one another and their outputs are connected in series  相似文献   

8.
The Electric Power System (EPS) being built for the International Space Station has undergone several significant changes over the last year, as major design decisions have been made for the overall station. While the basic topology and system elements have remained the same, there are important differences in connectivity, assembly sequence, and start-up. The key drivers for these changes in architecture have been the goal to simplify verification, and most significantly, the introduction of extensive Russian participation in the program. Having the Russians join the international community in this project has resulted in an expanded station size, larger crew, and almost doubled the observable surface of the Earth covered by the station. For the power system it has meant additional interfaces for power transfer, and new challenges for solar tracking at the higher inclination orbit. This paper reviews the current architecture and emphasizes the new features that have evolved, as the design for the new, larger station has developed. Additionally, the possible application of developing technology to the station, and other future missions is considered  相似文献   

9.
空间站维修性系统设计与验证方法研究   总被引:1,自引:0,他引:1  
张伟  夏侨丽 《载人航天》2014,(2):134-138
空间站在轨运行时间长,因此需采用维修性设计和在轨维修的方法实现长寿命高可靠在轨运行。根据维修性设计理论,结合工程实际,提出了基于产品特性分析的维修需求分析方法和维修支持下的可靠度计算方法。明确了系统维修性设计应包括布局、供电、信息、故障检测、维修工作模式等设计内容。并根据维修难度,提出了四级维修策略。最后根据在轨维修特点,提出了地面试验验证和仿真验证的方法。为空间站系统维修性设计提供了一个技术途径。  相似文献   

10.
This paper presents an overview of the identification and selection process of experiments and payloads for manned space flight missions, emphasizing the scope and magnitude of the problem of doing activity planning and the need for a methodology to assure timely flight and appropriate spacecraft design. Conclusions and results derived from the past several years are presented together with an analysis of the current procedure for defining activity for the space station.  相似文献   

11.
12.
General requirements and concepts for the 1975 space station information management problem are sized parametrically. Because of the need for feasible distribution of data to space and ground users over long-term flight conditions, emphasis has been placed on the preliminary concepts for onboard data processing and autonomous information handling combined with only single-point ground distribution. The requirements for such extensive critical data-distribution capabilities have been established from preliminary estimates.  相似文献   

13.
A Space Station Task Force was established by NASA in May 1982 to provide focus and direction for space station planning activities. The Task Force also provides Congress and the Administration with sufficient information to allow them to make an informed decision on whether the United States should proceed with a space station as the next major national initiative in space. This paper presents the status of planning activities to date, with major emphasis on the power system, and discusses technology options, power requirements, and schedule.  相似文献   

14.
The unique characteristics of the Space Station are changing the ways payloads are designed and accommodated for orbital flight. Station accommodations need to be versatile and operationally flexible to permit integration of many types of equipment in a variety of modes; and autonomous to render each payload independent or invisible to the rest of the system and other mission equipment. This paper presents the various categories of Space Station payloads, the user facilities that are being designed to accommodate them, illustrates through scientific and commercial scenarios the utilization of those facilities, and identifies the factors that must be considered to make the Space Station an effective tool for the users.  相似文献   

15.
16.
介绍空间站与地面之间通信的特点及其对TCP(传输控制协议)传输性能的影响,从充分利用空间通信链路的角度出发,提出了一个适合于空间站通信环境的基于TCP分段思想的SCPS-TP(空间通信协议规范-传输协议)协议转换器。详细分析了协议转换器实现的关键技术,并对实现的协议转换器进行了性能测试。  相似文献   

17.
18.
基于历史统计数据,采用最坏情况分析方法,分析空间天气事件引发的带电粒子环境及大气密度变化对空间站的工程影响,结果显示:(1)发生强太阳质子事件并伴随强地磁扰动(Kp>5)时,部分太阳质子可以到达空间站,但其对空间站元器件及材料在整个任务期内遭受的累积电离总剂量贡献不大;若航天员出舱活动持续8h,将遭受来自高能太阳质子的剂量当量为4mSv,大约相当于航天员驻留180d的1/80;(2)太阳耀斑和地磁暴均能引发大气密度变化,而地磁暴对空间站轨道影响较大,最恶劣情况多出现在太阳活动周下降期.即最坏情况下,在350km和400km高度,空间站轨道衰减率可分别增加652m/d和316m/d.  相似文献   

19.
Space solar power development   总被引:1,自引:0,他引:1  
  相似文献   

20.
The International Space Station is a unique multi-faceted orbiting laboratory supporting research, development, test and evaluation of new innovative space and Earth-based applications. While NASA sponsored investigations on the ISS are focused largely on enabling future long duration human space exploration missions, Congress designated the US portion of the space station as a National Laboratory making its facilities available to other Federal agencies and private entities for non-exploration related ventures. RDT&E activities on the ISS encompass a number of technical areas including environmental control and life support, communications, materials science, guidance, navigation and control, propulsion, electrical power, and thermal control systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号