首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
航空   11篇
航天技术   3篇
航天   8篇
  2021年   1篇
  2017年   2篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1991年   1篇
  1980年   2篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart.  相似文献   
2.
Human locomotion in simulated lunar and Martian environments is investigated. A unique human-rated underwater treadmill and an adjustable ballasting harness simulate partial gravity in order to better understand how gravity determines the biomechanics and energetics of human locomotion. This study has two research aspects, biomechanics and energetics. The fundamental biomechanics measurements are continuously recorded vertical forces as exerted by subjects of the treadmill which is instrumented with a force platform. Experimental results indicate that peak vertical force and stride frequency decrease as the gravity level is reduced. Foot contact time is independent of gravity level. Oxygen uptake measurements, VO2, constitute the energetics, or workload, data for this study. As theory predicts, locomotion energy requirements for lunar (1/6-g) and Martian (3/8-g) gravity levels are significantly less than at 1-g. The observed variation in workload with gravity level is nonmonotonic, however, in over half the subject population. The hypothesis is offered that energy expenditure increases for lunar, as compared with Martian, locomotion due to the subject "wasting energy" for stability and posture control in simulated lunar gravity. Biomechanics data could influence advanced spacesuit design and planetary habitat design, while workload data will help define oxygen requirements for planetary life support systems.  相似文献   
3.
A computational and experimental method is employed to provide an understanding of a critical human space flight problem, posture control following reduced gravity exposure. In the case of an emergency egress, astronauts' postural stability could be life saving. It is hypothesized that muscular gains are lowered during reduced gravity exposure, causing a feeling of heavy legs, or a perceived feeling of muscular weakness, upon return to Earth's 1 g environment. We developed an estimator-based model that is verified by replicating spatial and temporal characteristics of human posture and incorporates an inverted pendulum plant in series with a Hill-type muscle model, two feedback pathways, a central nervous system estimator, and variable gains. Results obtained by lowering the variable muscle gain in the model support the hypothesis. Experimentally, subjects were exposed to partial gravity (3/8 g) simulation on a suspension apparatus, then performed exercises postulated to expedite recovery and alleviate the heavy legs phenomenon. Results show that the rms position of the center of pressure increases significantly after reduced gravity exposure. Closed-loop system behavior is revealed, and posture is divided into a short-term period that exhibits higher stochastic activity and persistent trends and a long-term period that shows relatively low stochastic activity and antipersistent trends.  相似文献   
4.
5.
6.
Requirements are rarely static, and are ever more likely to evolve as the development time of a system stretches out and its service life increases. In this paper, we discuss the evolution of requirements for the US spacesuit, the extravehicular mobility unit (EMU), as a case study to highlight the need for flexibility in system design. We explore one fundamental environmental change, using the Space Shuttle EMU aboard the International Space Station, and the resulting EMU requirement and design changes. The EMU, like other complex systems, faces considerable uncertainty during its service life. Changes in the technical, political, or economic environment cause changes in requirements, which in turn necessitate design modifications or upgrades. We make the case that flexibility is a key attribute that needs to be embedded in the design of long-lived, complex systems to enable them to efficiently meet the inevitability of changing requirements after they have been fielded.  相似文献   
7.
8.
9.
The National Space Biomedical Research Institute (NSBRI) is supporting the National Aeronautics and Space Administration's (NASA) education mission through a comprehensive Education and Public Outreach Program (EPOP) that communicates the excitement and significance of space biology to schools, families, and lay audiences. The EPOP is comprised of eight academic institutions: Baylor College of Medicine, Massachusetts Institute of Technology, Morehouse School of Medicine, Mount Sinai School of Medicine, Texas A&M University, University of Texas Medical Branch Galveston, Rice University, and the University of Washington. This paper describes the programs and products created by the EPOP to promote space life science education in schools and among the general public. To date, these activities have reached thousands of teachers and students around the US and have been rated very highly.  相似文献   
10.
Despite the use of several countermeasures, significant physiological deconditioning still occurs during long duration spaceflight. Bone loss – primarily due to the absence of loading in microgravity – is perhaps the greatest challenge to resolve. This paper describes a conceptual Gravity Loading Countermeasure Skinsuit (GLCS) that induces loading on the body to mimic standing and – when integrated with other countermeasures – exercising on Earth. Comfort, mobility and other operational issues were explored during a pilot study carried out in parabolic flight for prototype suits worn by three subjects. Compared to the 1- or 2-stage Russian Pingvin Suits, the elastic mesh of the GLCS can create a loading regime that gradually increases in hundreds of stages from the shoulders to the feet, thereby reproducing the weight-bearing regime normally imparted by gravity with much higher resolution. Modelling shows that the skinsuit requires less than 10 mmHg (1.3 kPa) of compression for three subjects of varied gender, height and mass. Negligible mobility restriction and excellent comfort properties were found during the parabolic flights, which suggests that crewmembers should be able to work normally, exercise or sleep while wearing the suit. The suit may also serve as a practical 1 g harness for exercise countermeasures and vibration applications to improve dynamic loading.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号