首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is only within the last 5 years that we have learned how to recognize the unambiguous signature of magnetic reconnection in the solar wind in the form of roughly Alfvénic accelerated plasma flows embedded within bifurcated magnetic field reversal regions (current sheets). This paper provides a brief overview of what has since been learned about reconnection in the solar wind from both single and multi-spacecraft observations of these so-called reconnection exhausts.  相似文献   

2.
The goal of Working Group 1 was to discuss constraints on solar wind models. The topics for discussion, outlined by Eckart Marsch in his introduction, were: (1) what heats the corona, (2) what is the role of waves, (3) what determines the solar wind mass flux, (4) can stationary, multi-fluid models describe the fast and slow solar wind, or (5) do we need time dependent fluid models, kinetic models, and/or MHD models to describe solar wind acceleration. The discussion in the working group focused on observations of "temperatures" in the corona, mainly in coronal holes, and whether the observations of line broadening should be interpreted as thermal broadening or wave broadening. Observations of the coronal electron density and the flow speed in coronal holes were also discussed. There was only one contribution on observations of the distant solar wind, but we can place firm constraints on the solar wind particle fluxes and asymptotic flow speeds from observations with Ulysses and other spacecraft. Theoretical work on multi-fluid models, higher-order moment fluid models, and MHD models of the solar wind were also presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The composition of the solar wind is largely determined by the composition of the source material, i.e. the present-day composition of the outer convective zone. It is then modified by the processes which operate in the transition region and in the inner corona. In situ measurements of the solar wind composition give a unique opportunity to obtain information on the isotopic and elemental composition of the Sun. However, elemental — and to some degree also isotopic — fractionation can occur in the flow of matter from the outer convective zone into the interplanetary space. The most important examples of elemental fractionation are the well-known FIP/FIT effect (First Ionization Potential/Time) and the sometimes dramatic variations of the helium abundance relative to hydrogen in the solar wind. A thorough investigation of fractionation processes which cause compositional variations in different solar wind regimes is necessary to make inferences about the solar source composition from solar wind observations. Our understanding of these processes is presently improving thanks to the detailed diagnostics offered by the optical instrumentation on SOHO. Correlated observations of particle instruments on Ulysses, WIND, and SOHO, together with optical observations will help to make inferences for the solar composition. Continuous in situ observations of several isotopic species with the particle instruments on WIND and SOHO are currently incorporated into an experimental database to infer isotopic fractionation processes which operate in different solar wind regimes between the solar surface and the interplanetary medium. Except for the relatively minor effects of secular gravitational sedimentation which works at the boundary between the outer convective zone and the radiative zone, refractory elements such as Mg can be used as faithful witnesses to monitor the magnitude of these processes. With theoretical considerations it is possible to make inferences about the importance of isotopic fractionation in the solar wind from a comparison of optical and in situ observations of elemental fractionation with the corresponding models. Theoretical models and preliminary results from particle observations indicate that the combined isotope effects do not exceed a few percent per mass unit. In the worst case, which concerns the astrophysically important 3He/4He ratio, we expect an overall effect of at most several percent in the sense of a systematic depletion of the heavier isotope. Continued observations with WIND, SOHO, and ACE, and, with the revival of the foil technique, with the upcoming Genesis mission will further consolidate our knowledge about the relation between solar wind dynamics and solar wind composition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of much debate. This paper summarizes some of the essential ingredients of realistic and self-consistent models of solar wind acceleration. It also outlines the major issues in the recent debate over what physical processes dominate the mass, momentum, and energy balance in the accelerating wind. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent models that assume the energy comes from Alfvén waves that are partially reflected, and then dissipated by magnetohydrodynamic turbulence, have been found to reproduce many of the observed features of the solar wind. This paper discusses results from these models, including detailed comparisons with measured plasma properties as a function of solar wind speed. Some suggestions are also given for future work that could answer the many remaining questions about coronal heating and solar wind acceleration.  相似文献   

5.
Pneuman  G. W. 《Space Science Reviews》1986,43(1-2):105-138
In this review, we consider the central physical aspects pertinent to the acceleration of the solar wind. Special importance is placed on the high-speed streams since the properties of these structures seem to strain the various theoretical explanations the most. Heavy emphasis is also given to the observations — particularly as to what constraints they place on the theories. We also discuss certain sporadic events such as spicules, macrospicules, X-ray bright points, and outflows seen in the EUV associated with the explosive events, jets, and coronal bullets which could be of relevance to this problem.Three theoretical concepts pertaining to the solar wind acceleration process are examined — purely thermal acceleration with and without extended heating, acceleration due to Alfvén wave pressure, and diamagnetic acceleration. Emphasis is given to how well these theories meet the constraints imposed by the observations. Diamagnetism is argued to be a powerful ingredient in solar wind theory, both in the light of observed sporatic outflows seen in the chromosphere and transition region and also because of its effectiveness in increasing the flow speed and producing strong acceleration near the Sun in line with coronal hole observations.  相似文献   

6.
The modulation of galactic cosmic rays in the heliosphere seems to be dominated by four major mechanisms: convection, diffusion, drifts (gradient, curvature and current sheet), and adiabatic energy losses. In this regard the global structure of the solar wind, the heliospheric magnetic field (HMF), the current sheet (HCS), and that of the heliosphere itself play major roles. Individually, the four mechanisms are well understood, but in combination, the complexity increases significantly especially their evolvement with time - as a function of solar activity. The Ulysses observations contributed significantly during the past solar minimum modulation period to establish the relative importance of these major mechanisms, leading to renewed interest in developing more sophisticated numerical models, and in the underlying physics, e.g., what determines the diffusion tensor. With increased solar activity, the relative contributions of the mentioned mechanisms change, but how they change and what causes these changes over an 11-year solar cycle is not well understood. It can therefore be expected that present and forthcoming observations during solar maximum activity will again produce very important insights into the causes of long-term modulation. In this paper the basic theory of solar modulation is reviewed for galactic cosmic rays. The influence of the Ulysses observations on the development of the basic theory and numerical models are discussed, especially those that have challenged the theory and models. Model-based predictions are shown for what might be encountered during the next solar minimum. Lastly, modulation theory and modelling are discussed for periods of maximum solar activity when a global reorganization of the HMF, and the HCS, occurs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Coronal holes have been identified as source regions of the fast solar wind, and MHD wave activity has been detected in coronal holes by remote sensing, and in situ in fast solar wind streams. I review some of the most suggestive wave observations, and discuss the theoretical aspects of MHD wave heating and solar wind acceleration in coronal holes. I review the results of single fluid 2.5D MHD, as well as multi-fluid 2.5D MHD models of waves in coronal holes, the heating, and the acceleration of the solar wind be these waves.  相似文献   

8.
Acceleration of the solar wind   总被引:2,自引:0,他引:2  
In this review, we discuss critically recent research on the acceleration of the solar wind, giving emphasis to high-speed solar wind streams emanating from solar coronal holes. We first explain why thermally driven wind models constrained by solar and interplanetary observations encounter substantial difficulties in explaining high speed streams. Then, through a general discussion of energy addition to the solar wind above the coronal base, we indicate a possible resolution of these difficulties. Finally, we consider the question of what role MHD waves might play in transporting energy through the solar atmosphere and depositing it in the solar wind, and we conclude by examining, in a simple way, the specific mechanism of solar wind acceleration by Alfvén waves and the related problem of accelerating massive stellar winds with Alfvén waves.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.On leave from the Auroral Observatory, Institute of Mathematical and Physical Sciences, University of Tromsø, N-9001 Tromsø, Norway.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
In this article we have discussed reasons both of solar and of interstellar origin giving rise to a pronounced three-dimensional structure of the expanding solar wind and thus of the global configuration of the heliosphere. Our present observational knowledge on these structurings is reviewed, and all attempts to theoretically model these solar wind structures are critically analysed with respect to their virtues and flaws. It is especially studied here by what mechanisms interstellar imprints on the actual type of solar wind expansion can be envisaged. With concern to this aspect it hereby appears to be of eminent importance that the solar system maintains a relative motion with a submagnetosonic velocity of about 23km/sec with respect to the ambient magnetized interstellar medium corresponding to a magnetosonic Mach number of about 0.5.A heliopause closing the distant heliospheric cavity within a solar distance of about 100AU on the upwind side and opening it into an largely extended tail on the downwind side results as a first consequence from this relative motion. As a second consequence an asymmetric heliospheric shockfront with upwind distances smaller than downwind distances by ratios between 1/3 and 2/3 is most likely provoked which gives rise to at least two important upwind-downwind asymmetric processes influencing the supersonic solar wind expansion downstream from the shock: the anomalous cosmic ray diffusion into the solar wind, and high energetic jet electrons originating at the shock and moving inwards up to an inner critical point at around 20AU. As we shall demonstrate both processes are influencing the solar wind expansion beyond 20AU, however, more efficiently in the upwind hemisphere as compared to the downwind hemisphere. In the region inside 20AU other mechanisms are operating to propagate the interstellar imprint on the solar wind expansion further downstream into the inner heliosphere because here even the original solar wind electrons, in view of the solar wind bulk velocities, behave as a subsonic plasma constituent which can modify the solar wind solutions by means of an appropriate detuning of the circumsolar electric polarisation field. We give quantitative estimates for these effects.What concerns the theory of a solar wind expansion into a counterflowing ambient interstellar medium, some flaws of the present theoretical attempts are identified impeding that the interstellar influence on the actual solar wind solutions can become visible. We thus conclude that there is a clear need for three-dimensional and time-dependent solar wind models with a free outflow geometry taking into account the multisonicity of the solar wind plasma with different eigenmodes for a perturbation propagation.  相似文献   

10.
The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.  相似文献   

11.
The solar wind evolves as it moves outward due to interactions with both itself and with the circum-heliospheric interstellar medium. The speed is, on average, constant out to 30 AU, then starts a slow decrease due to the pickup of interstellar neutrals. These neutrals reduce the solar wind speed by about 20% before the termination shock (TS). The pickup ions heat the thermal plasma so that the solar wind temperature increases outside 20–30 AU. Solar cycle effects are important; the solar wind pressure changes by a factor of 2 over a solar cycle and the structure of the solar wind is modified by interplanetary coronal mass ejections (ICMEs) near solar maximum. The first direct evidences of the TS were the observations of streaming energetic particles by both Voyagers 1 and 2 beginning about 2 years before their respective TS crossings. The second evidence was a slowdown in solar wind speed commencing 80 days before Voyager 2 crossed the TS. The TS was a weak, quasi-perpendicular shock which transferred the solar wind flow energy mainly to the pickup ions. The heliosheath has large fluctuations in the plasma and magnetic field on time scales of minutes to days.  相似文献   

12.
Corotating Interaction Regions (CIRs) form as a consequence of the compression of the solar wind at the interface between fast speed streams and slow streams. Dynamic interaction of solar wind streams is a general feature of the heliospheric medium; when the sources of the solar wind streams are relatively stable, the interaction regions form a pattern which corotates with the Sun. The regions of origin of the high speed solar wind streams have been clearly identified as the coronal holes with their open magnetic field structures. The origin of the slow speed solar wind is less clear; slow streams may well originate from a range of coronal configurations adjacent to, or above magnetically closed structures. This article addresses the coronal origin of the stable pattern of solar wind streams which leads to the formation of CIRs. In particular, coronal models based on photospheric measurements are reviewed; we also examine the observations of kinematic and compositional solar wind features at 1 AU, their appearance in the stream interfaces (SIs) of CIRs, and their relationship to the structure of the solar surface and the inner corona; finally we summarise the Helios observations in the inner heliosphere of CIRs and their precursors to give a link between the optical observations on their solar origin and the in-situ plasma observations at 1 AU after their formation. The most important question that remains to be answered concerning the solar origin of CIRs is related to the origin and morphology of the slow solar wind. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The large-scale coronal magnetic fields of the Sun are believed to play an important role in organizing the coronal plasma and channeling the high and low speed solar wind along the open magnetic field lines of the polar coronal holes and the rapidly diverging field lines close to the current sheet regions, as has been observed by the instruments aboard the Ulysses spacecraft from March 1992 to March 1997. We have performed a study of this phenomena within the framework of a semi-empirical model of the coronal expansion and solar wind using Spartan, SOHO, and Ulysses observations during the quiescent phase of the solar cycle. Key to this understanding is the demonstration that the white light coronagraph data can be used to trace out the topology of the coronal magnetic field and then using the Ulysses data to fix the strength of the surface magnetic field of the Sun. As a consequence, it is possible to utilize this semi-empirical model with remote sensing observation of the shape and density of the solar corona and in situ data of magnetic field and mass flux to predict values of the solar wind at all latitudes through out the solar system. We have applied this technique to the observations of Spartan 201-05 on 1–2 November, 1998, SOHO and Ulysses during the rising phase of this solar cycle and speculate on what solar wind velocities Ulysses will observe during its polar passes over the south and the north poles during September of 2000 and 2001. In order to do this the model has been generalized to include multiple streamer belts and co-located current sheets. The model shows some interesting new results. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
There are three major types of solar wind: The steady fast wind originating on open magnetic field lines in coronal holes, the unsteady slow wind coming probably from the temporarily open streamer belt and the transient wind in the form of large coronal mass ejections. The majority of the models is concerned with the fast wind, which is, at least during solar minimum, the normal mode of the wind and most easily modeled by multi-fluid equations involving waves. The in-situ constraints imposed on the models, mainly by the Helios (in ecliptic) and Ulysses (high-latitude) interplanetary measurements, are extensively discussed with respect to fluid and kinetic properties of the wind. The recent SOHO observations have brought a wealth of new information about the boundary conditions for the wind in the inner solar corona and about the plasma conditions prevailing in the transition region and chromospheric sources of the wind plasma. These results are presented, and then some key questions and scientific issues are identified. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
16.
McComas  D.J.  Bame  S.J.  Barker  P.  Feldman  W.C.  Phillips  J.L.  Riley  P.  Griffee  J.W. 《Space Science Reviews》1998,86(1-4):563-612
The Solar Wind Electron Proton Alpha Monitor (SWEPAM) experiment provides the bulk solar wind observations for the Advanced Composition Explorer (ACE). These observations provide the context for elemental and isotopic composition measurements made on ACE as well as allowing the direct examination of numerous solar wind phenomena such as coronal mass ejections, interplanetary shocks, and solar wind fine structure, with advanced, 3-D plasma instrumentation. They also provide an ideal data set for both heliospheric and magnetospheric multi-spacecraft studies where they can be used in conjunction with other, simultaneous observations from spacecraft such as Ulysses. The SWEPAM observations are made simultaneously with independent electron and ion instruments. In order to save costs for the ACE project, we recycled the flight spares from the joint NASA/ESA Ulysses mission. Both instruments have undergone selective refurbishment as well as modernization and modifications required to meet the ACE mission and spacecraft accommodation requirements. Both incorporate electrostatic analyzers whose fan-shaped fields of view sweep out all pertinent look directions as the spacecraft spins. Enhancements in the SWEPAM instruments from their original forms as Ulysses spare instruments include (1) a factor of 16 increase in the accumulation interval (and hence sensitivity) for high energy, halo electrons; (2) halving of the effective ion-detecting CEM spacing from ∼5° on Ulysses to ∼2.5° for ACE; and (3) the inclusion of a 20° conical swath of enhanced sensitivity coverage in order to measure suprathermal ions outside of the solar wind beam. New control electronics and programming provide for 64-s resolution of the full electron and ion distribution functions and cull out a subset of these observations for continuous real-time telemetry for space weather purposes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The scenario explaining the origin of the anomalous component of cosmic rays (ACR) implies a close relation between these high energy particles and the solar wind termination shock representing their main acceleration region. Consequently, one should expect the ACR distributions in the heliosphere to reflect some information about the structure as well as the large-scale geometry of the shock. We study the influence of a non-spherically symmetric heliospheric shock on the off-ecliptic — i.e. high latitude — ACR distributions using a two-dimensional model including their anisotropic diffusion and drift in the heliospheric magnetic field as well as a solar wind flow dependent on the heliographic latitude. The model calculations are used to investigate the probability of a possible polar elongation of the heliospheric shock from observations of the distributions of the ACR at high latitudes during solar minimum conditions.  相似文献   

18.
Modulation models based on the numerical solution of Parker's transport equation for galactic cosmic rays in the heliosphere make clear predictions about modulation in the high latitude heliosphere. However, for these predictions certain assumptions have to be made, for example, what the heliospheric magnetic field (HMF) looks like above the solar poles and what the spatial dependence of the diffusion coefficients are. For this presentation the general predictions of a standard drift model for the modulation of cosmic rays in the high latitude heliosphere, in particular predictions for the Ulysses trajectory, are discussed and critically reviewed. Preliminary results from Ulysses show a significant increase in the solar wind speed towards higher latitudes. The effects of this strong latitudinal dependence together with different modifications of the HMF at these high latitudes on the apparently too large diffusion and drifts predicted by current models are also shown.  相似文献   

19.
Recent observations with UVCS on SOHO of high outflow velocities of O5+ at low coronal heights have spurred much discussion about the dynamics of solar wind acceleration. On the other hand, O6+ is the most abundant oxygen charge state in the solar wind, but is not observed by UVCS or by SUMER because this helium-like ion has no emission lines falling in the wave lengths observable by these instruments. Therefore, there is considerable interest in observing O5+ in situ in order to understand the relative importance of O5+ with respect to the much more abundant O6+. High speed streams are the prime candidates for the search for O5+ because all elements exhibit lower freezing-in temperatures in high speed streams than in the slow solar wind. The Ulysses spacecraft was exposed to long time periods of high speed streams during its passage over the polar regions of the Sun. The Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is capable of resolving this rare oxygen charge state. We present the first measurement of O5+ in the solar wind and compare these data with those of the more abundant oxygen species O6+ and O7+. We find that our observations of the oxygen charge states can be fitted with a single coronal electron temperature in the range of 1.0 to 1.2 MK assuming collisional ionization/recombination equilibrium with an ambient Maxwellian electron gas. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Consequences of the solar wind input observed as large scale magnetotail dynamics during substorms are reviewed, highlighting results from statistical studies as well as global magnetosphere/ionosphere observations. Among the different solar wind input parameters, the most essential one to initiate reconnection relatively close to the Earth is a southward IMF or a solar wind dawn-to-dusk electric field. Larger substorms are associated with such reconnection events closer to the Earth and the magnetotail can accumulate larger amounts of energy before its onset. Yet, how and to what extent the magnetotail configuration before substorm onset differs for different solar wind driver is still to be understood. A strong solar wind dawn-to-dusk electric field is, however, only a necessary condition for a strong substorm, but not a sufficient one. That is, there are intervals when the solar wind input is processed in the magnetotail without the usual substorm cycle, suggesting different modes of flux transport. Furthermore, recent global observations suggest that the magnetotail response during the substorm expansion phase can be also controlled by plasma sheet density, which is coupled to the solar wind on larger time-scales than the substorm cycle. To explain the substorm dynamics it is therefore important to understand the different modes of energy, momentum, and mass transport within the magnetosphere as a consequence of different types of solar wind-magnetosphere interaction with different time-scales that control the overall magnetotail configuration, in addition to the internal current sheet instabilities leading to large scale tail current sheet dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号