首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Voyagers 1 and 2 are now observing the latitudinal structure of the heliospheric magnetic field in the distant heliosphere (the legion between - 30 AU and the termination shock). Voyager 2 is observing the influence of the interstellar medium on the solar wind. The pressure of the interstellar pickup protons, measured by their contribution to pressure balanced structures, is greater than or equal to the magnetic pressure and much greater than the thermal pressures of the solar wind protons and electrons in the distant heliosphere. The solar wind speed is observed to decrease and the proton temperature increase with increasing distance from the sun. This may result from the production of pickup ions by the charge exchange process with the interstellar neutrals. The introduction of the pickup ions into the dynamics of the magnetized solar wind plasma appears to be an important new process which must be considered in future theoretical studies of the termination shock and boundary with the local interstellar medium.  相似文献   

2.
This paper provides a brief summary on the current knowledge of the properties of the Circum-Heliospheric Interstellar Medium (CHISM). It discusses what can be learnt on the parameters of CHISM’s components from analysis of measurements performed inside the heliosphere. The analysis is based on the kinetic-gasdynamic models of the solar wind/interstellar medium interaction. We focus the analysis on three types of diagnostics: 1) interstellar H atom number density at the heliospheric termination shock inferred from pickup ion measurements, 2) the location and time of the Voyager 1 and 2 termination shock crossings, 3) the deflection of the interstellar H atom flow inside the heliosphere as been measured by SOHO/SWAN. From these results estimations of the unknown local interstellar parameters are deduced. The parameters are the number densities of interstellar H+ and H and the magnitude and direction of the interstellar magnetic field in the vicinity of the solar system.  相似文献   

3.
D. J. McComas  E. R. Christian  N. A. Schwadron  N. Fox  J. Westlake  F. Allegrini  D. N. Baker  D. Biesecker  M. Bzowski  G. Clark  C. M. S. Cohen  I. Cohen  M. A. Dayeh  R. Decker  G. A. de Nolfo  M. I. Desai  R. W. Ebert  H. A. Elliott  H. Fahr  P. C. Frisch  H. O. Funsten  S. A. Fuselier  A. Galli  A. B. Galvin  J. Giacalone  M. Gkioulidou  F. Guo  M. Horanyi  P. Isenberg  P. Janzen  L. M. Kistler  K. Korreck  M. A. Kubiak  H. Kucharek  B. A. Larsen  R. A. Leske  N. Lugaz  J. Luhmann  W. Matthaeus  D. Mitchell  E. Moebius  K. Ogasawara  D. B. Reisenfeld  J. D. Richardson  C. T. Russell  J. M. Sokół  H. E. Spence  R. Skoug  Z. Sternovsky  P. Swaczyna  J. R. Szalay  M. Tokumaru  M. E. Wiedenbeck  P. Wurz  G. P. Zank  E. J. Zirnstein 《Space Science Reviews》2018,214(8):116
The Interstellar Mapping and Acceleration Probe (IMAP) is a revolutionary mission that simultaneously investigates two of the most important overarching issues in Heliophysics today: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. While seemingly disparate, these are intimately coupled because particles accelerated in the inner heliosphere play critical roles in the outer heliospheric interaction. Selected by NASA in 2018, IMAP is planned to launch in 2024. The IMAP spacecraft is a simple sun-pointed spinner in orbit about the Sun-Earth L1 point. IMAP’s ten instruments provide a complete and synergistic set of observations to simultaneously dissect the particle injection and acceleration processes at 1 AU while remotely probing the global heliospheric interaction and its response to particle populations generated by these processes. In situ at 1 AU, IMAP provides detailed observations of solar wind electrons and ions; suprathermal, pickup, and energetic ions; and the interplanetary magnetic field. For the outer heliosphere interaction, IMAP provides advanced global observations of the remote plasma and energetic ions over a broad energy range via energetic neutral atom imaging, and precise observations of interstellar neutral atoms penetrating the heliosphere. Complementary observations of interstellar dust and the ultraviolet glow of interstellar neutrals further deepen the physical understanding from IMAP. IMAP also continuously broadcasts vital real-time space weather observations. Finally, IMAP engages the broader Heliophysics community through a variety of innovative opportunities. This paper summarizes the IMAP mission at the start of Phase A development.  相似文献   

4.
The “classic” anomalous cosmic ray (ACR) component originates as interstellar neutral atoms that drift into the heliosphere, become ionized and picked up by the solar wind, and carried to the outer heliosphere where the pickup ions are accelerated to hundreds of MeV, presumably at the solar wind termination shock. These interstellar ACRs are predominantly singly charged, although higher charge states are present and become dominant above ~350 MeV. Their isotopic composition is like that of the solar system and unlike that of the source of galactic cosmic rays. A comparison of their energy spectra with the estimated flux of pickup ions flowing into the termination shock reveals a mass-dependent acceleration efficiency that favors heavier ions. There is also a heliospheric ACR component as evidenced by “minor” ACR ions, such as Na, Mg, S, and Si that appear to be singly-ionized ions from a source likely in the outer heliosphere.  相似文献   

5.
The consequences of the interaction between the solar wind and the local interstellar medium for the wind region enclosed by the heliospheric shock are reviewed. After identifying the principal mechanisms to influence the dynamics of the solar wind, an approach allowing the simultaneous incorporation of neutral atoms, pick-up ions, cosmic rays and energetic electrons into a multifluid model of the expanding wind plasma is outlined. The effects of these particle species are discussed in detail, with special emphasis on the electron component which behaves more like a quasi-static hot gas rather than an expanding fluid. This electron gas is effectively trapped within a three-dimensional trough of a circumsolar electric potential whose outer fringes are possibly determined by the density distribution of anomalous cosmic rays. The electrons are proven to be a globally structered component of great importance for the solar wind momentum flow contributing to a triggering of the solar wind dynamics by asymmetric interstellar boundary conditions. Finally, the consequences for the relative motion of the Sun and the local interstellar medium as well as for the solar system as a whole are described.  相似文献   

6.
Jokipii  J.R.  Giacalone  J. 《Space Science Reviews》1998,83(1-2):123-136
Anomalous cosmic rays are a heliospheric phenomenon in which interstellar neutral atoms stream into the heliosphere, are ionized by either solar radiation or the solar wind, and are subsequently accelerated to very high energies, greater than 1 GeV. Current thinking has the bulk of the acceleration to very-high energies taking place, by the mechanism of diffusive shock acceleration, at the termination shock of the solar wind. Detailed two-dimensional numerical simulations and models based on this picture show broad agreement with a number of the observed properties of anomalous cosmic rays. Recent improvements to this picture include the observation of multiply charged cosmic rays and the suggestion that some "preacceleration" of the initially ionized particles occurs in the inner heliosphere.  相似文献   

7.
A simple model has been developed that demonstrates that heliospheric X-ray emission can account for about 25%–50% of observed soft X-ray background intensities. Similar to cometary soft X-ray emission, these X-rays are thought to be produced in the heliosphere due to charge transfer collisions between heavy solar wind ions and interstellar neutrals. A more complex model has now been developed to take into account temporal and spatial variations of the solar wind and interstellar neutrals. Measured time histories of the solar wind proton flux are used in the model and the results are compared with the ‘long-term enhancements’ in the soft X-ray background measured by ROSAT for the same time period. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Interstellar atoms penetrate deep into the heliosphere after passing through the heliospheric interface—the region of the interaction of the solar wind with the interstellar medium. The heliospheric interface serves as a filter for the interstellar atoms of hydrogen and oxygen, and, to a lesser extent, nitrogen, due to their coupling with interstellar and heliospheric plasmas by charge exchange and electron impact ionization. The filtration has great importance for the determination of local interstellar abundances of these elements, which becomes now possible due to measurements of interstellar pickup by Ulysses and ACE, and anomalous cosmic rays by Voyagers, Ulysses, ACE, SAMPEX and Wind. The filtration of the different elements depends on the level of their coupling with the plasma in the interaction region. The recent studies of the filtration of the interstellar atoms in the heliospheric interface region is reviewed in this paper. The dependence of the filtration on the local interstellar proton and H atom number densities is discussed and the roles of the charge exchange and electron impact ionization on the filtration are evaluated. The influence of electron temperature in the inner heliosheath on the filtration process is discussed as well. Using the filtration coefficients obtained from the modeling and SWICS/Ulysses pickup ion measurements, the local interstellar abundances of the considered elements are determined.  相似文献   

9.
The combination of recent observational and theoretical work has completed the catalog of the sources of heliospheric Pickup Ions (PUIs). These PUIs are the seed population for Anomalous Cosmic Rays (ACRs), which are accelerated to high energies at or beyond the Termination Shock (TS). For elements with high First Ionization Potentials (high-FIP atoms: e.g., H, He, Ne, etc.), the dominant source of PUIs and ACRs is from neutral atoms that drift into the heliosphere from the Local Interstellar Medium (LISM) and, prior to ionization, are influenced primarily by solar gravitation and radiation pressure (for H). After ionization, these interstellar ions are pickup up by the solar wind, swept out, and are either accelerated near the TS or beyond it. Elements with low first ionization potentials (low-FIP atoms: e.g., C, Si, Mg, Fe, etc.) are also observed as PUIs by Ulysses and as ACRs by Wind and Voyager. But the low-FIP composition of this additional component reveals a very different origin. Low-FIP interstellar atoms are predominantly ionized in the LISM and therefore excluded from the heliosphere by the solar wind. Remarkably, a low-FIP component of PUIs was hypothesized by Banks (J. Geophys. Res. 76, 4341, 1971) over twenty years prior to its direct detection by Ulysses/SWICS (Geiss et al., J. Geophys. Res. 100(23), 373, 1995) The leading concept for the generation of Inner Source PUIs involves an effective recycling of solar wind on grains near the Sun, as originally suggested by Banks. Voyager and Wind also observe low-FIP ACRs, and a grain-related source appears likely and necessary. Two concepts have been proposed to explain these low-FIP ACRs: the first concept involves the acceleration of the Inner Source of PUIs, and the second involves a so-called Outer Source of PUIs generated from solar wind interaction with the large population of grains in the Kuiper Belt. We review here the observational and theoretical work over the last decade that shows how solar wind and heliospheric grains interact to produce pickup ions, and, in turn, anomalous cosmic rays. The inner and outer sources of pickup ions and anomalous cosmic rays exemplify dusty plasma interactions that are fundamental throughout the cosmos for the production of energetic particles and the formation of stellar systems.  相似文献   

10.
Pickup ions, created by ionization of slow moving atoms and molecules well inside the heliosphere, provide us with a new tool to probe remote regions in and beyond the heliosphere and to study injection and acceleration processes in the solar wind. Comprehensive and continuous measurements of H, He, C, N, O, Ne and other pickup ions, especially with the Solar Wind Ion Composition Spectrometer (SWICS) on both Ulysses and ACE, have given us a wealth of data that have been used to infer chemical and physical properties of the local interstellar cloud. With SWICS on Ulysses we discovered a new population of pickup ions, produced from atomic and molecular sources deep inside the heliosphere. The velocity distributions and composition of these “inner source” pickup ions are distinctly different from those of interstellar pickup ions, showing effects of strong adiabatic cooling, and a composition resembling that of the solar wind. Strong cooling indicates that the source of these pickup ions lies close to the Sun. The similarity of composition of inner source heavy ions to that of the solar wind implies that the dominant production mechanism for these pickup ions involves the absorption and re-emission of solar wind from interplanetary dust grains. While interstellar pickup ions are the seed population of the main Anomalous Cosmic Rays (ACRs), inner source pickup ions may be an important source of the rarer ACRs such as C, Mg, Si, S, and Fe. We present new results and review previous work with an emphasis on characteristics of the local interstellar cloud and properties of the inner source. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
B. Heber 《Space Science Reviews》2013,176(1-4):265-278
The Ulysses spacecraft had been the first to orbit the Sun over its poles and to explore the heliosphere at these high heliolatitudes. It has now completed three fast latitude scans, two at solar minimum and one at solar maximum. Since its launch in October 1990, this mission has led to several surprising discoveries concerning energetic particles, cosmic rays, Jovian electrons, the solar wind, the heliospheric magnetic field and the global features of the heliosphere. This review addresses the propagation and modulation of cosmic rays and other charged particles from an observational point of view with emphasis on what has been learned from exploring the inner heliosphere to high heliolatitudes.  相似文献   

12.
Spectroscopic observations of the hydrogen Lyα lines from nearby stars taken by the Hubble Space Telescope (HST) sometimes show absorption signatures from the heliosphere. This absorption is a unique diagnostic of material in the outermost parts of our heliosphere. We summarize how the HST data have been used to test various models of the heliosphere, particularly new 3-dimensional MHD models that have recently become available. We also focus on new detections of heliospheric absorption in very downwind directions, which can only be modeled using heliospheric model codes with extended grids in the downwind direction. We illustrate a couple attempts to reproduce this absorption using a couple of these extended tail models.  相似文献   

13.
14.
Cosmic ray particles respond to the heliospheric magnetic field in the expanding solar wind and its turbulence and therefore provide a unique probe for conditions in the changing heliosphere. During the last four years, concentrated around the solar minimum period of solar cycle 22, the exploration of the solar polar regions by the joint ESA/NASA mission Ulysses revealed the three-dimensional behavior of cosmic rays in the inner and middle heliosphere. Also during the last decades, the Pioneer and Voyager missions have greatly expanded our understanding of the structure and extent of the outer heliosphere. Simultaneously, numerical models describing the propagation of galactic cosmic rays are becoming sophisticated tools for interpreting and understanding these observations. We give an introduction to the subject of the modulation of galactic cosmic rays in the heliosphere during solar minimum. The modulation effects on cosmic rays of corotating interaction regions and their successors in the outer heliosphere are discussed in more detail by Gazis, McDonald et al. (1999) and McKibben, Jokipii et al. (1999) in this volume. Cosmic-ray observations from the Ulysses spacecraft at high heliographic latitudes are also described extensively in this volume by Kunow, Lee et al. (1999). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.  相似文献   

16.
The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were launched in 1972, 1974, and 1977, respectively. While these three spacecraft are all at compartively low heliographic latitudes compared with Ulysses, their observation span almost two solar cycles, a range of heliocentric distances from 1 to 57 AU, and provide a unique insight into the long-term variability of the global structure of the solar wind. We examine the spatial and temporal variation of average solar wind parameters and fluxes. Our obsevations suggest that the global structure of the outer heliosphere during the declining phase of the solar cycle at heliographic latitudes up to 17.5°N was charaterized by two competing phenomena: 1) a large-scale increase of solar wind density, temperature, mass flux, dynamic pressure, kinetic energy flux, and thermal enery flux with heliographic latitude, similar to the large-scale latitudinal gradient of velocity seen in IPS observations, 2) a small-scale decrease in velocity and temperature, and increase in density near the heliospheric current sheet, which is associated with a band of low speed, low temperature, and high density solar wind similar to that observed in the inner heliosphere.  相似文献   

17.
The Ulysses spacecraft has been the first to orbit the Sun over its poles and to explore the heliosphere at these high heliolatitudes. It has now completed two fast latitude scans, one at solar minimum and one at solar maximum. Since its launch in October 1990, this mission has led to several surprising discoveries concerning energetic particles, cosmic rays, Jovian electrons, the solar wind, the heliospheric magnetic field and the global features of the heliosphere. This review addresses mainly the propagation and modulation of cosmic rays and other charged particles, from both an observational and theoretical point of view, with emphasis on what has been learned from exploring the inner heliosphere to high heliolatitudes. This is done for solar minimum and maximum conditions. The review is concluded with a summary of the main scientific discoveries and insights gained so far from the Ulysses mission.  相似文献   

18.
Gloeckler  G.  Cain  J.  Ipavich  F.M.  Tums  E.O.  Bedini  P.  Fisk  L.A.  Zurbuchen  T.H.  Bochsler  P.  Fischer  J.  Wimmer-Schweingruber  R.F.  Geiss  J.  Kallenbach  R. 《Space Science Reviews》1998,86(1-4):497-539
The Solar Wind Ion Composition Spectrometer (SWICS) and the Solar Wind Ions Mass Spectrometer (SWIMS) on ACE are instruments optimized for measurements of the chemical and isotopic composition of solar and interstellar matter. SWICS determines uniquely the chemical and ionic-charge composition of the solar wind, the thermal and mean speeds of all major solar wind ions from H through Fe at all solar wind speeds above 300 km s−1 (protons) and 170 km s−1 (Fe+16), and resolves H and He isotopes of both solar and interstellar sources. SWICS will measure the distribution functions of both the interstellar cloud and dust cloud pickup ions up to energies of 100 keV e−1. SWIMS will measure the chemical, isotopic and charge state composition of the solar wind for every element between He and Ni. Each of the two instruments uses electrostatic analysis followed by a time-of-flight and, as required, an energy measurement. The observations made with SWICS and SWIMS will make valuable contributions to the ISTP objectives by providing information regarding the composition and energy distribution of matter entering the magnetosphere. In addition, SWICS and SWIMS results will have an impact on many areas of solar and heliospheric physics, in particular providing important and unique information on: (i) conditions and processes in the region of the corona where the solar wind is accelerated; (ii) the location of the source regions of the solar wind in the corona; (iii) coronal heating processes; (iv) the extent and causes of variations in the composition of the solar atmosphere; (v) plasma processes in the solar wind; (vi) the acceleration of particles in the solar wind; (vii) the physics of the pickup process of interstellar He in the solar wind; and (viii) the spatial distribution and characteristics of sources of neutral matter in the inner heliosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
20.
‘The Japanese Mars probe, NOZOMI, is staying in the interplanetary space (1–1.5 AU) until its Mars’ orbit insertion scheduled in early 2004. Every 16 months on this interplanetary orbit the spacecraft crosses around 1 AU the ‘gravitational focusing cone’ of the interstellar helium, which are penetrating into the inner heliosphere under the solar gravity. During the first crossing of the cone in the season of March–May 2000, we observed these helium particles after the solar wind pickup process with an E/q type ion detector aboard NOZOMI. We have estimated the original temperature of the interstellar helium as 11 000 K. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号