首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The interplanetary space is not a passive medium, which merely constitutes a scene for the propagation of previously accelerated energetic particles, but influences the distribution of particles by changing their energies as well due to interactions with magnetic field inhomogeneities. Such processes manifest themselves in the energy spectra of solar energetic particle (SEP) events. In this paper the fluxes of protons with energies of 4–60 MeV are investigated on the basis of two data sets. Both sets are homogeneous, obtained by the CPME instrument aboard the IMP 8 satellite between 1974 and 2001. The first includes all SEP events where the integral fluxes of >4 MeV protons exceeded 2 particle/cm2 s sr. The other set consists of fluxes recorded in differential energy windows between 0.5 and 48 MeV. Important characteristics of SEP events include the rates of decrease of particle flux, which, as well as peak flux time, is an integral feature of the interplanetary medium within a considerable region, surrounding the observation point. The time intervals selected cover the decay phases of SEP events following flares, CMEs and interplanetary shocks of different origin. Only those parts of declines were selected, that could reasonably be described by exponential dependence, irrespective of the gradual/impulsive character of the events. It is shown that the average values of characteristic decay time, τ, and energy spectral index, γ, are all changing with the solar activity phase. Distributions of τ and γ values are obtained in SEPs with and without shocks and during different phases of events: just after peak flux and late after maximum.  相似文献   

2.
Impulsive solar energetic particle (SEP) events are associated with impulsive X-ray flares, energetic electrons,and enhanced heavy ion abundances. Using instruments on ACE, we have examined the composition and origin of twelve impulsive SEP events from November 1997 to June 2000. All selected impulsive SEP events have enhanced 3He/4He ratios compared with the solar wind values. The range of 3He/4He ratios varies from 0.01 to 7.8. By assuming scatter-free propagation at zero degree pitch-angle, we fitted the minimum particle path lengths (from 1.2 to 1.4 AU, as expected), and estimated the ion event release time back at the Sun to within better than 30 minutes in most cases. We found only four events in which the release times agree for both 38–50 keV electrons and <1 MeV/nucleon ions. Five of our events have significant differences (>40 minutes) between the electron and ion onset times, all with ions injected later. Three impulsive ion events have no association with any impulsive electron event. Seven events have associated solar electromagnetic signatures (Type III radio bursts and/or X-ray flares).  相似文献   

3.
Energetic particle signatures of geoeffective coronal mass ejections   总被引:1,自引:0,他引:1  
We have studied statistically associations of moderate and intense geomagnetic storms with coronal mass ejections (CMEs) and energetic particle events. The goal was to identify specific energetic particle signatures, which could be used to improve the predictions of the geoeffectiveness of full and partial halo CMEs. Protons in the range 1–110 MeV from the ERNE experiment onboard SOHO are used in the analysis. The study covers the time period from August 1996 to July 2000. We demonstrate the feasibility of energetic particle observations as an additional source of information in evaluating the geoeffectiveness of full and partial halo CMEs. Based on the observed onset times of solar energetic particle (SEP) events and energetic storm particle (ESP) events, we derive a proxy for the transit times of shocks driven by the interplanetary counterparts of coronal mass ejections from the Sun to the Earth. For a limited number of geomagnetic storms which can be associated to both SEP and ESP signatures, we found that this transit time correlates with the strength of geomagnetic storms.  相似文献   

4.
We have developed an operational code, SOLPENCO, that can be used for space weather prediction schemes of solar energetic particle (SEP) events. SOLPENCO provides proton differential flux and cumulated fluence profiles from the onset of the event up to the arrival of the associated traveling interplanetary shock at the observer’s position (either 1.0 or 0.4 AU). SOLPENCO considers a variety of interplanetary scenarios where the SEP events develop. These scenarios include solar longitudes of the parent solar event ranging from E75 to W90, transit speeds of the associated shock ranging from 400 to 1700 km s−1, proton energies ranging from 0.125 to 64 MeV, and interplanetary conditions for the energetic particle transport characterized by specific mean free paths. We compare the results of SOLPENCO with flux measurements of a set of SEP events observed at 1 AU that fulfill the following four conditions: (1) the association between the interplanetary shock observed at 1 AU and the parent solar event is well established; (2) the heliolongitude of the active region site is within 30° of the Sun–Earth line; (3) the event shows a significant proton flux increase at energies below 96 MeV; (4) the pre-event intensity background is low. The results are discussed in terms of the transit velocity of the shock and the proton energy. We draw conclusions about both the use of SOLPENCO as a prediction tool and the required improvements to make it useful for space weather purposes.  相似文献   

5.
Historically, solar energetic particle (SEP) events are classified in two classes as “impulsive” and “gradual”. Whether there is a clear distinction between the two classes is still a matter of debate, but it is now commonly accepted that in large “gradual” SEP events, Fermi acceleration, also known as diffusive shock acceleration, is the underlying acceleration mechanism. At shock waves driven by coronal mass ejections (CMEs), particles are accelerated diffusively at the shock and often reach > MeV energies (and perhaps up to GeV energies). As a CME-driven shock propagates, expands and weakens, the accelerated particles can escape ahead of the shock into the interplanetary medium. These escaping energized particles then propagate along the interplanetary magnetic field, experiencing only weak scattering from fluctuations in the interplanetary magnetic field (IMF). In this paper, we use a Monte-Carlo approach to study the transport of energetic particles escaping from a CME-driven shock. We present particle spectra observed at 1 AU. We also discuss the particle “crossing number” at 1AU and its implication to particle anisotropy. Based on previous models of particle acceleration at CME-driven shocks, our simulation allows us to investigate various characteristics of energetic particles arriving at various distances from the sun. This provides us an excellent basis for understanding the observations of high-energy particles made at 1 AU by ACE and WIND.  相似文献   

6.
Many physical processes precede and accompany the solar energetic particles (SEP) occurrence on the Earth’s orbit. Explosive energy release on the Sun gives rise to a flare and a coronal mass ejection (CME). X-ray and gamma emissions are believed to be connected with flares. Radio emission is signature of disturbances traveling through the corona and interplanetary space. Particles can gain energy both in the flare and the accompanying wave processes. The beginning of the SEP events has the advantage of being the phase most close to the time of acceleration. Influence of interplanetary transport is minimal in the case of first arriving relativistic solar protons recorded by ground based neutron monitors in so called ground-level enhancements (GLE). The early phase of the SEP events attracts attention of many scientists searching for the understanding of particle acceleration. However, they come to the opposite conclusions. While some authors find arguments for coronal mass ejections as a sole accelerator of SEPs, others prove a flare to be the SEP origin. Here, the circumstances of SEP generation for several GLEs of the 23rd solar cycle are considered. Timing of X-ray, CME, and radio emissions shows a great variety from event to event. However, the time of particle ejection from the Sun is closer to maximum of X-ray emission than to any other phenomena considered. No correlation is found between the particle fluxes and the CME characteristics.  相似文献   

7.
统计分析了自1976-2017年期间记录到的217次SEP(Solar Energetic Particle)事件的日冕足点经度位置,其分布特征符合日冕横向分布的东西效应,同时基于两相传输模型及其Green函数解,对发生在不同日冕足点的四次SEP事件进行了模拟研究.模拟与观测结果表现一致,表明该模型能够较好地模拟发生在...  相似文献   

8.
Two successive solar energetic particle (SEP) events associated with fast and wide coronal mass ejections (CMEs) on 2001 April 14 and 15 are compared. The weak SEP event of April 14 associated with an 830 km/s CME and an M1.0 flare was the largest impulsive event of cycle 23. The April 15 event, the largest ground level event of cycle 23, was three orders of magnitude more intense than the April 14th event and was associated with a faster CME (1200 km/s) and an X14.4 flare. We compiled and compared all the activities (flares, CMEs, interplanetary conditions and radio bursts) associated with the two SEP events to understand the intensity difference between them. Different coronal and interplanetary environments of the two events (presence of preceding CME and seed particles ahead of the April 15 event) may explain the intensity difference.  相似文献   

9.
基于1996-2005年88个引起重大地磁暴的CME(日冕物质抛射)事件、1996-2000年的47个CME事件以及1997-2002年的29个全晕状CME事件,结合ACE卫星在1AU处的太阳风和行星际磁场观测资料以及Wilcox Solar Observatory(WSO)天文台的太阳光球层磁图,分析了背景太阳风速度和日球电流片对CME到达1AU处渡越时间预报误差的影响.结果表明,背景太阳风速度与CME渡越时间误差并没有明显的相关性,在考虑了磁云通量管轴相对黄道面夹角的影响后相关性依然不明显.然而日球电流片对CME渡越时间却有明显的影响,对于初速度较小的异侧CME事件,其渡越时间大于同侧事件;而对于具有较大初速度的CME事件,异侧事件的渡越时间明显小于同侧事件.研究结果表明,CME与太阳风以及日球电流片的相互作用并不是简单的对流相互作用,造成高速CME异侧事件快于同侧事件到达地球的因素非常复杂,有待深入研究.   相似文献   

10.
During the extreme burst of solar activity in October–November 2003, a series of outstanding events distinguished by their magnitude and peculiarities were recorded by the ground based neutron monitor network. The biggest and most productive in 23rd solar cycle active region 486 generated the most significant series of solar flares among of which the flare X28/3B on November 4, 2003 was the mostly powerful over the history of X-ray solar observations. The fastest arrival of the interplanetary disturbance from the Sun after the flare event in August 1972 and the highest solar wind velocity and IMF intensity were observed during these events. In one-week period three ground level enhancements (GLEs) of solar cosmic rays were recorded by neutron monitor network (28, 29 October and 2 November 2003). Maximum proton energy in these events seems to be ranged from 5 to 10 GeV. Joint analysis of data from ground level stations (neutron monitors) and satellite measurements allows the estimation of the particle path length, the onset time of the injection on the Sun and some other proton flux characteristics.  相似文献   

11.
The shape of the particle flux decline in solar energetic particle (SEP) events is of particular importance in understanding the propagation of energetic particles in the interplanetary medium. Power-law time profiles indicate the dominance of diffusive propagation, whereas exponential-law decline emphasizes convection transport and adiabatic deceleration. Values obtained theoretically for the decay time in the latter case are reasonably close to the fitted slopes in nearly half of all events when the solar wind speed stays nearly constant. Dependencies of characteristic decay time τ and spectral index γ on environmental plasma parameters are considered. Parts of exponential-law declines when solar wind speed: (a) decreases with time, (b) is constant, and (c) increases with time through the interval are analyzed separately. Both average values and dispersions of size distributions of τ for these three groups markedly differ in accordance with theoretical expectations.  相似文献   

12.
A so-called “ISF” prediction method for geomagnetic disturbances caused by solar wind storms blowing to the Earth is suggested. The method is based on a combined approach of solar activity, interplanetary scintillation (I) and geomagnetic disturbance observations during the period 1966–1982 together with the dynamics of solar wind storm propagation (S) and fuzzy mathematics (F). It has been used for prediction tests for 37 geomagnetic disturbance events during the descending solar activity phase 1984–1985, and was presented in 33rd COSPAR conference. Here, it has been improved by consideration of the three dimensional propagation characteristics of each event, the search for the best radio source and the influence of the southward components of interplanetary magnetic fields on the geomagnetic disturbances. It is used for prediction tests for 24 larger geomagnetic disturbance events that produced space anomalies during the period 1980–1999. The main results are: (1) for the onset time of the geomagnetic disturbance, the relative error between the observation, Tobs, and the prediction, Tpred, ΔTpred/Tobs  10% for 45.8% of all events, 30% for 78.3% and >30% for only 21.7%; (2) for the magnetic disturbance magnitude, the relative error between the observation, ∑Kp,obs, and the prediction, ∑Kp,pred, Δ∑Kp,pred/∑Kp,obs  10% for 41.6% of all events, 30% for 79% and 45% for 100%. This shows that the prediction method described here has encouraging prospects for improving predictions of large geomagnetic disturbances in space weather events.  相似文献   

13.
We present numerical results showing the effect of neutral hydrogen atoms on the solar wind (SW) interaction with the local interstellar medium (LISM), where the interstellar magnetic field (ISMF) is coupled to the interplanetary magnetic field (IMF) at the surface of the heliopause. The IMF on the inner boundary surrounding the Sun is specified in the form of a Parker spiral and self-consistently develops in accordance with the SW motion inside the heliopause. The model of the SW–LISM interaction involves both plasma and neutral components which are treated as fluids. The configuration is chosen where the ISMF is orthogonal to the LISM velocity and tilted 60° to the ecliptic plane. This orientation of the magnetic field is a possible explanation of the 2–3 kHz emission data which is believed to originate ahead of the heliopause. It is shown that the topology of the heliospheric current sheet is substantially affected by the ISMF. The interaction pattern dependence on the neutral hydrogen density is analyzed.  相似文献   

14.
During extreme solar events such as big flares or/and energetic coronal mass ejections (CMEs) high energy particles are accelerated by the shocks formed in front of fast interplanetary coronal mass ejections (ICMEs). The ICMEs (and their sheaths) also give rise to large geomagnetic storms which have significant effects on the Earth’s environment and human life. Around 14 solar cosmic ray ground level enhancement (GLE) events in solar cycle 23 we examined the cosmic ray variation, solar wind speed, ions density, interplanetary magnetic field, and geomagnetic disturbance storm time index (Dst). We found that all but one of GLEs are always followed by a geomagnetic storm with Dst  −50 nT within 1–5 days later. Most(10/14) geomagnetic storms have Dst index  −100  nT therefore generally belong to strong geomagnetic storms. This suggests that GLE event prediction of geomagnetic storms is 93% for moderate storms and 71% for large storms when geomagnetic storms preceded by GLEs. All Dst depressions are associated with cosmic ray decreases which occur nearly simultaneously with geomagnetic storms. We also investigated the interplanetary plasma features. Most geomagnetic storm correspond significant periods of southward Bz and in close to 80% of the cases that the Bz was first northward then turning southward after storm sudden commencement (SSC). Plasma flow speed, ion number density and interplanetary plasma temperature near 1 AU also have a peak at interplanetary shock arrival. Solar cause and energetic particle signatures of large geomagnetic storms and a possible prediction scheme are discussed.  相似文献   

15.
Recently much attention has been focused on the transient behavior of the magnetopause in response to pressure pulses and southward fluctuations of the interplanetary magnetic field. We examine the motion of the magnetopause behind the foreshock and conclude that this motion is affected by foreshock pressure variations but not by fluctuations in the direction of the magnetic field. Neither magnetopause erosion nor flux transfer event occurrence is controlled by the foreshock. On the contrary, flux transfer events occur at times of steady IMF and thier quasi-periodic behavior is controlled by the magnetopause or the magnetosphere and is not driven by the external boundary conditions. Since flux transfer events are clearly due to reconnection, this observation implies that the IMF must be southward some time perhaps as long as 7 minutes before flux transfer begins.  相似文献   

16.
We investigate properties of large (>20%) and sharp (<10 min) solar wind ion flux changes using INTERBALL-1 and WIND plasma and magnetic field measurements from 1996 to 1999. These ion flux changes are the boundaries of small-scale and middle-scale solar wind structures. We describe the behavior of the solar wind velocity, temperature and interplanetary magnetic field (IMF) during these sudden flux changes. Many of the largest ion flux changes occur during periods when the solar wind velocity is nearly constant, so these are mainly plasma density changes. The IMF magnitude and direction changes at these events can be either large or small. For about 55% of the ion flux changes, the sum of the thermal and magnetic pressure are in balance across the boundary. In many of the other cases, the thermal pressure change is significantly more than the magnetic pressure change. We also attempted to classify the types of discontinuities observed.  相似文献   

17.
Long-term balloon observations have been performed by the Lebedev Physical Institute since 1957 up to the present time. The observations are taken several times a week at the polar and mid latitudes and allow us to study dynamics of galactic and solar cosmic ray as well as secondary particle fluxes in the atmosphere and in the near-Earth space. Solar energetic particles (120) – mostly protons – (SEP) events with >100 MeV proton intensity above 1 cm−2 s−1 s−1 were recorded during 1958–2006. Before the advent of the SEP monitoring on spacecraft these results constituted the only homogeneous series of >100 MeV SEP events. The SEP intensities and energy spectra inferred from the Lebedev Physical Institute observations are consistent with the results taken in the adjacent energy intervals by the spacecraft and neutron monitors. Joint consideration of the SEP events series recorded by balloons and by neutron monitors during solar cycles 20–23 makes it possible to restore the probable number of events in solar cycle 19, which was not properly covered by observations. Some correlation was found between duration of SEP event production in a solar cycle and sunspot cycle characteristics.  相似文献   

18.
Peak fluxes are an important property of gradual solar energetic particle (SEP) event time profiles from both astro/heliophysical and applications perspectives. However, the peak flux in an event may occur at the event onset, or at the time of the interplanetary shock arrival (the ESP or energetic storm particles). This makes an important difference in the interpretation of the peak flux, and in any attempts to characterize or model it. This paper describes a study of SEP data sets from ACE, IMP-8 and GOES toward determining the relative properties of these peak fluxes for protons with energies near 1, 10, and 50 MeV. The results suggest that for gradual events with both peaks, the ESP peak often dominates at 1 MeV energies and is dominant about half the time at 10 MeV. Moreover, the prompt peak fluxes can be used to estimate the shock peak (ESP event) up to days ahead, especially in the lower energy range.  相似文献   

19.
The problem of modeling solar energetic particle (SEP) events is important to both space weather research and forecasting, and yet it has seen relatively little progress. Most important SEP events are associated with coronal mass ejections (CMEs) that drive coronal and interplanetary shocks. These shocks can continuously produce accelerated particles from the ambient medium to well beyond 1 AU. This paper describes an effort to model real SEP events using a Center for Integrated Space weather Modeling (CISM) MHD solar wind simulation including a cone model of CMEs to initiate the related shocks. In addition to providing observation-inspired shock geometry and characteristics, this MHD simulation describes the time-dependent observer field line connections to the shock source. As a first approximation, we assume a shock jump-parameterized source strength and spectrum, and that scatter-free transport occurs outside of the shock source, thus emphasizing the role the shock evolution plays in determining the modeled SEP event profile. Three halo CME events on May 12, 1997, November 4, 1997 and December 13, 2006 are used to test the modeling approach. While challenges arise in the identification and characterization of the shocks in the MHD model results, this approach illustrates the importance to SEP event modeling of globally simulating the underlying heliospheric event. The results also suggest the potential utility of such a model for forcasting and for interpretation of separated multipoint measurements such as those expected from the STEREO mission.  相似文献   

20.
The origin of the anisotropy in the shape of the Martian obstacle and bow shock is analyzed using Mars Global Surveyor observations. The influence of MHD or ion pick-up effects on Martian obstacle position was to be small found, however, localized Martian crustal magnetization increases the thickness of the downstream planetary magnetotail by 500–1000 km in agreement with earlier Phobos 2 observations. A new analytical model is presented for Martian obstacle shape variation for different solar wind ram pressure. Elongation of the Martian BS cross-section in the direction perpendicular to IMF was confirmed while the shift of this cross section in the +Y direction of Martian interplanetary medium reference frame was discovered. The shift of BS cross section in the direction of interplanetary electric field was not revealed thus not conforming the idea that mass-loading play some role in BS control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号