首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary objective of the Scintillation and Tomography Receiver in Space (CITRIS) is to detect ionospheric irregularities from space at low latitude. For this purpose, the satellite receiver uses the UHF and S-Band transmissions of the ground network of Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) beacons. CITRIS, developed at the Naval Research Laboratory, differs from the normal DORIS receiver by being able to capture and store the complex amplitude of the 401.25 and 2036.25 MHz transmissions at 200 Hz sample rate. Ground processing of the CITRIS data yields total electron content (TEC) and both phase and amplitude scintillations. With CITRIS flying on the US Space Test Program (STP) satellite STPSat1, 2 years of data were collected and processed to determine the fluctuations in ionospheric TEC and radio scintillations associated with equatorial irregularities. CITRIS flights over DORIS transmitters yield direct measurements of the horizontal plasma density fluctuations associated with equatorial plasma bubbles. Future flights of CITRIS can provide valuable complements to other satellite instruments such as GPS occultation receivers used to estimate vertical electron density profiles in the ionosphere.  相似文献   

2.
This paper presents results pertaining to the response of the mid-latitude ionosphere to strong geomagnetic storms that occurred from 31 March to 02 April 2001 and 07–09 September 2002. The results are based on (i) Global Positioning Systems (GPSs) derived total electron content (TEC) variations accompanying the storm, (ii) ionosonde measurements of the ionospheric electrodynamic response towards the storms and (iii) effect of storm induced travelling ionospheric disturbances (TIDs) on GPS derived TEC. Ionospheric data comprising of ionospheric TEC obtained from GPS measurements, ionograms, solar wind data obtained from Advanced Composition Explorer (ACE) and magnetic data from ground based magnetometers were used in this study. Storm induced features in vertical TEC (VTEC) have been obtained and compared with the mean VTEC of quiet days. The response of the mid-latitude ionosphere during the two storm periods examined may be characterised in terms of increased or decreased level of VTEC, wave-like structures in VTEC perturbation and sudden enhancement in hmF2 and h′F. The study reveals both positive and negative ionospheric storm effects on the ionosphere over South Africa during the two strong storm conditions. These ionospheric features have been mainly attributed to the travelling ionospheric disturbances (TIDs) as the driving mechanism for the irregularities causing the perturbations observed. TEC perturbations due to the irregularities encountered by the satellites were observed on satellites with pseudo random numbers (PRNs) 15, 17, 18 and 23 between 17:00 and 23:00 UT on 07 September 2002.  相似文献   

3.
Variations in the high-latitude ionosphere structure during March 22, 1979 geomagnetic storm are examined. Electron density Ne and temperature Te from the Cosmos-900 satellite, NmF2, Ne and He+ from the ISS-b satellite, precipitation of soft electrons from the Intercosmos-19 satellite, and the global picture of the auroral electron precipitation from the DMSP, TIROS and P78 satellites are used. These multi-satellite databases allow us to investigate the storm-time variations in the locations of the following ionospheric structures: the day-time cusp, the equatorial boundary of the diffuse auroral precipitation (DPB), the main ionospheric trough (MIT), the day-time trough, the ring ionospheric trough (RIT) and the light ions trough (LIT). The variations in NmF2, Ne, He+ and Te in the high-latitude ionosphere for the different local time sectors are analyzed also. The features of the high-latitude ionospheric response to a strong magnetic storm are described.  相似文献   

4.
The present study reveals the features of ionospheric parameters variations during the geomagnetic storm of September 7–8, 2017. In particular, parameters of vertical (foF2, foEs) and oblique ionospheric sounding (MOF, modes), absorption level, Total Electron Content (TEC) and particle fluxes at high altitudes were under analysis. The storm was characterized by two Dst-index mimima and can be considered as a sequence of two storms: first - with Dstmin?=??142?nT at 02 UT on September 8th and second - with Dstmin?=??122?nT and at 15 UT on September 8th. It was found that these two storms had different impacts on the ionosphere and HF propagation at mid- and high-latitudes of Northern Hemisphere. The signals of vertical and oblique ionospheric sounding were present in all ionograms before the first storm. Further, at the maximum of the first storm these signals were totally absorbed. Then, before the second storm and during its maximum the signals were detected again in the ionograms due to the low absorption. GOES satellite data showed the significant burst of electrons and protons only during the first storm and small particle fluxes - during the second storm. This feature was also confirmed with GPS data: TEC increased during the first storm and decreased during the second storm.  相似文献   

5.
We use observations of ionospheric scintillation at equatorial latitudes from two GPS receivers specially modified for recording, at a sampling rate of 50 Hz, the phase and the amplitude of the L1 signal and the Total Electron Content (TEC) from L1 and L2. The receivers, called GISTM (GPS Ionospheric Scintillation and TEC Monitor), are located in Vietnam (Hue, 16.4°N, 107.6°E; Hoc Mon, 10.9°N, 106.6°E). These experimental observations are analysed together with the tomographic reconstruction of the ionosphere produced by the Multi-Instrument Data Analysis System (MIDAS) for investigating the moderate geomagnetic storm which occurred on early April 2006, under low solar activity. The synergic adoption of the ionospheric imaging and of the GISTM measurements supports the identification of the scale-sizes of the ionospheric irregularities causing scintillations and helps the interpretation of the physical mechanisms generating or inhibiting the appearance of the equatorial F layer irregularities. In particular, our study attributes to the turning of the IMF (Interplanetary Magnetic Field) between northward and southward direction an important role in the inhibition of the generation of spread F irregularities resulting in a lack of scintillation enhancement in the post-sunset hours.  相似文献   

6.
This paper presents traveling ionospheric disturbances (TIDs) observations from GPS measurements over the South African region during the geomagnetically disturbed period of 29–31 October 2003. Two receiver arrays, which were along two distinct longitudinal sectors of about 18°-20° and 27°-28° were used in order to investigate the amplitude, periods and virtual propagation characteristics of the storm induced ionospheric disturbances. The study revealed a large sudden TEC increase on 28 October 2003, the day before the first of the two major storms studied here, that was recorded simultaneously by all the receivers used. This pre-storm enhancement was linked to an X-class solar flare, auroral/magnetospheric activities and vertical plasma drift, based on the behaviour of the geomagnetic storm and auroral indices as well as strong equatorial electrojet. Diurnal trends of the TEC and foF2 measurements revealed that the geomagnetic storm caused a negative ionospheric storm; these parameters were depleted between 29 and 31 October 2003. Large scale traveling ionospheric disturbances were observed on the days of the geomagnetic storms (29 and 31 October 2003), using line-of-sight vertical TEC (vTEC) measurements from individual satellites. Amplitude and dominant periods of these structures varied between 0.08–2.16 TECU, and 1.07–2.13 h respectively. The wave structures were observed to propagate towards the equator with velocities between 587.04 and 1635.09 m/s.  相似文献   

7.
The ionospheric plasma density can be significantly disturbed during magnetic storms. In the conventional scenario of ionospheric storms, the negative storm phases with plasma density decreases are caused by neutral composition changes, and the positive storm phases with plasma density increases are often related to atmospheric gravity waves. However, recent studies show that the global redistribution of the ionospheric plasma is dominated primarily by electric fields during the first hours of magnetic storms. In this paper, we present the measurements of ionospheric disturbances by the DMSP satellites and GPS network during the magnetic storm on 6 April 2000. The DMSP measurements include the F region ion velocity and density at the altitude of ∼840 km, and the GPS receiver network provides total electron content (TEC) measurements. The storm-time ionospheric disturbances show the following characteristics. The plasma density is deeply depleted in a latitudinal range of ∼20° over the equatorial region in the evening sector, and the depletions represent plasma bubbles. The ionospheric plasma density at middle latitudes (20°–40° magnetic latitudes) is significantly increased. The dayside TEC is increased simultaneously over a large latitudinal range. An enhanced TEC band forms in the afternoon sector, goes through the cusp region, and enters the polar cap. All the observed ionospheric disturbances occur within 1–5 h from the storm sudden commencement. The observations suggest that penetration electric fields play a major role in the rapid generation of equatorial plasma bubbles and the simultaneous increases of the dayside TEC within the first 2 h during the storm main phase. The ionospheric disturbances at later times may be caused by the combination of penetration electric fields and neutral wind dynamo process.  相似文献   

8.
利用全球定位系统(Global Positioning System,GPS)的双频观测数据反演得到电离层的总电子含量(Total Electron Content,TEC),使得广域甚至全球范围高时空分辨率的电离层观测研究成为可能,但由于GPS卫星和接收机对信号的硬件延迟可导致TEC测量系统偏差,因此,需要探索反演TEC并估测GPS卫星与接收机硬件延迟的有效算法.本文根据电离层电波传播理论,阐述了基于双频GPS观测提取电离层TEC的方法,给出TEC与硬件延迟的基本关系.综合研究了TEC与硬件延迟的反演方法,进行分析与归纳分类,在此基础上提出了有待深入研究的问题.   相似文献   

9.
The ionosphere/plasmasphere electron content (PEC) variations during strong geomagnetic storms in November 2004 were estimated by combining of mid-latitude Kharkov incoherent scatter radar observations and GPS TEC data derived from global TEC maps. The comparison between two independent measurements was performed by analysis of the height-temporal distribution for specific location corresponding to the mid-latitudes of Europe. The percentage contribution of PEC to GPS TEC indicated the clear dependence from the time with maximal values (more than 70%) during night-time. During day-time the lesser values (30–45%) were observed for quiet geomagnetic conditions and rather high values of the PEC contribution to GPS TEC (up to 90%) were observed during strong negative storm. These changes can be explained by the competing effects of electric fields and winds, which tend to raise the layer to the region with lower loss rate and movement of the ionospheric plasma to the plasmasphere.  相似文献   

10.
Results derived from analysing the ionospheric response to faint and bright solar flares are presented. The analysis used novel technology of a global detection of ionospheric effects from solar flares as developed by the authors (Afraimovich, 2000a; Afraimovich, 2000b), on the basis of phase measurements of the total electron content (TEC) in the ionosphere using an international GPS network. The essence of the method is that use is made of appropriate filtering and a coherent processing of variations in the TEC which is determined from GPS data, simultaneously for the entire set of visible GPS satellites at all stations used in the analysis. This technique is useful for identifying the ionospheric response to faint solar flares (of X-ray class C) when the variation amplitude of the TEC response to separate line-on-sight (LOS) is comparable to the level of background fluctuations. The dependence of the TEC variation response amplitude on the flare location on the Sun is investigated.  相似文献   

11.
磁暴期间电离层扰动的GPS台网观测分析   总被引:1,自引:3,他引:1  
给出了一种利用GPS台网观测获取TEC快速变化的计算方法,并将该方法用于东亚一澳大利亚扇区的GPS台网观测数据,分析了2000年7月14—18H大磁暴期间的电离层响应,揭示出电离层暴期间赤道异常峰的压缩和移动等特性.计算结果表明,在站点分布不均匀、原始观测数据不足且随时间跳变等多种不利因素的影响下,这种新的算法仍能保持很好的计算稳定性,并能快速地提取给定时空范围内的三维TEC短时变化的特征,适用于研究电离层暴等情况下引起的TEC扰动.  相似文献   

12.
In this paper, we study ionospheric total electron content (TEC) disturbances associated with tropical cyclones (TCs). The study relies on the statistical analysis of six cyclones of different intensity which occurred in the North–West Pacific Ocean in September–November 2005. We have used TEC data from the international network of two-frequency ground-based GPS receivers and NCEP/NCAR meteorological archive. TEC variations of different period ranges (02–20 and 20–60 min) are shown to be more intense during TC peaks under quiet geomagnetic conditions. The highest TEC variation amplitudes are registered when the wind speed in the cyclone and the TC area are maximum. The intensification of TEC disturbances is more pronounced when several cyclones occur simultaneously. We have revealed that the ionospheric response to TC can be observed only after the cyclone has reached typhoon intensity. The ionospheric response is more pronounced at low satellite elevation angles.  相似文献   

13.
利用全球分布的GPS原始观测数据提取的电离层总电子含量(TEC)分析了2004年11月6日至12日期间全球电离层暴的形态特点与发展过程.结果表明,11月8日磁暴主相期间电离层暴以大范围的强烈正暴为主,在11月10日的恢复相,Dst又一次降到最低值前后期间,电离层再次受到很强的扰动,大范围的正暴和负暴交替出现.这次磁暴期间夏季半球的负暴更加强烈,反映出负暴偏向于在夏季半球发生的季节变化特点.另外,磁暴期间,夜晚TEC值普遍比磁暴前的平静期要低,具体是什么机制导致还需要进一步收集数据和分析.   相似文献   

14.
Accurate knowledge of the electron density is the key point in correcting ionospheric delays of electromagnetic measurements and in studying ionosphere physics. During the last decade Global Navigation Satellite Systems (GNSS) have become a promising tool for monitoring ionospheric parameters such as the total electron content (TEC). In this contribution we present a four-dimensional (4-D) model of the electron density consisting of a given reference part, i.e., the International Reference Ionosphere (IRI), and an unknown correction term expanded in terms of multi-dimensional base functions. The corresponding series coefficients are calculable from the satellite measurements by applying parameter estimation procedures. Since satellite data are usually sampled between GPS satellites and ground stations, finer structures of the electron density are modelable just in regions with a sufficient number of ground stations. The proposed method is applied to simulated geometry-free GPS phase measurements. The procedure can be used, for example, to study the equatorial anomaly.  相似文献   

15.
The effects of the 15 May 2005 severe geomagnetic storm on the South African ionosphere are studied using ground-based and satellite observations. Ionospheric disturbances have less frequently been investigated over mid-latitude regions. Recently, a number of studies investigated their evolution and generation over these regions. This paper reports on the first investigation of travelling ionospheric disturbances (TIDs) over mid-latitude South Africa. Using global positioning system (GPS)-derived total electron content (TEC) variations from the South African network of dual frequency GPS receivers, we were able to examine the effects of the disturbance on the TEC. During this storm, two TEC enhancements were observed at low- and mid-latitudes: the first enhancement was observed between 30–45°S geomagnetic latitudes associated with equatorward neutral winds and the passage of a TID, while the second TEC enhancement is associated with a second TID. In addition, the F-region critical frequency (foF2) values observed at two ionosonde stations show response features that differ from those of the TEC during the disturbance period. The dissimilarity between the TEC and the foF2 suggests that two competing drivers may have existed, i.e., the westward electric field and equatorward neutral wind effects.  相似文献   

16.
The response of the ionospheric F-region in the equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 06–07 April 2000 has been studied in the present investigation. The geomagnetic storm reached a minimum Dst of −288 nT at 0100 UT on 07 April. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from GPS observations obtained at Imperatriz (5.5°S, 47.5°W; IMPZ), Brasília (15.9°S, 47.9°W; BRAZ), Presidente Prudente (22.12°S, 51.4°W; UEPP), and Porto Alegre (30.1°S, 51.1°W; POAL) during the period 05–08 April. Also, several GPS-based TEC maps are presented from the global GPS network, showing widespread and drastic TEC changes during the different phases of the geomagnetic storm. In addition, ion density measurements on-board the satellite Defense Meteorological Satellite Program (DMSP) F15 orbiting at an altitude of 840 km and the first Republic of China satellite (ROCSAT-1) orbiting at an altitude of 600 km are presented. The observations indicate that one of the orbits of the DMSP satellite is fairly close to the 4 GPS stations and both the DMSP F15 ion-density plots and the phase fluctuations from GPS observations show no ionospheric irregularities in the Brazilian sector before 2358 UT on the night of 06–07 April 2000. During the fast decrease of Dst on 06 April, there is a prompt penetration of electric field of magnetospheric origin resulting in decrease of VTEC at IMPZ, an equatorial station and large increase in VTEC at POAL, a low latitude station. This resulted in strong phase fluctuations on the night of 06–07 April, up to POAL. During the daytime on 07 April during the recovery phase, the VTEC observations show positive ionospheric storm at all the GPS stations, from IMPZ to POAL, and the effect increasing from IMPZ to POAL. This is possibly linked to the equatorward directed meridional wind. During the daytime on 08 April (the recovery phase continues), the VTEC observations show very small negative ionospheric storm at IMPZ but the positive ionospheric storm effect is observed from BRAZ to POAL possibly linked to enhancement of the equatorial ionospheric anomaly.  相似文献   

17.
With the advent of modern global networks of dual-frequency Global Positioning System (GPS), total electron content (TEC) measurements along slant paths connecting GPS receivers and satellites at 22,000 km have become the largest data set available to ionospheric scientists. The TEC can be calculated from the time and phase delay in the GPS signal using the GPS Toolkit, but an unknown bias will remain. In addition, UHF/VHF radio beacons on board low-Earth-orbiting satellites can also be used to measure the electron content. However, the TEC measurements are obtained by integrating TEC differences between slant paths, but also contain biases. It is often necessary to use data assimilative algorithms like the Ionospheric Data Assimilation Three-Dimensional (IDA3D), and to treat both GPS- and LEO-beacon TEC measurements as relative data in order to conduct ionospheric studies.  相似文献   

18.
We investigated the ionospheric anomalies observed before the Tohoku earthquake, which occurred near the northeast coast of Honshu, Japan on 11 March, 2011. Based on data from a ground-based Global Positioning System (GPS) network on the Korean Peninsula, ionospheric anomalies were detected in the total electron content (TEC) during the daytime a few days before earthquake. Ionospheric TEC anomalies appeared on 5, 8 and 11 March. In particular, the ionospheric disturbances on 8 March evidenced a remarkable increase in TEC. The GPS TEC variation associated with the Tohoku earthquake was an increase of approximately 20 total electron content units (TECU), observed simultaneously in local and global TEC measurements. To investigate these pre-earthquake ionospheric anomalies, space weather conditions such as the solar activity index (F10.7) and geomagnetic activity indices (the Kp and Dst indices) were examined. We also created two-dimensional TEC maps to visual the spatial variations in the ionospheric anomalies preceding the earthquake.  相似文献   

19.
This paper investigates the ionospheric storm of December 19–21, 2015, which was initiated by two successive CME eruptions that caused a G3 space weather event. We used the in situ electron density (Ne) and electron temperature (Te) and the Total Electron Content (TEC) measurements from SWARM-A satellite, as well as the O/N2 observations from TIMED/GUVI to study the ionospheric impact. The observations reveal the longitudinal and hemispherical differences in the ionospheric response to the storm event. A positive ionospheric storm was observed over the American, African and Asian regions on 20 December, and the next day showed a negative storm. Both these exhibited hemispheric differences. A positive storm was observed over the East Pacific region on 21 December. It is seen that the net effect of both the disturbance dynamo electric field and composition differences become important in explaining the observed variability in topside ionospheric densities. In addition, we also discuss the Te variations that occurred as a consequence of the space weather event.  相似文献   

20.
Simultaneous GPS observations from about 150 stations of European Permanent Network (EPN) have been used for studying dynamics of latitudinal profiles and structure of mid-latitude ionospheric trough (MIT). For the analyses, the TEC maps over Europe were created with high spatial and temporal resolution. The latitudinal profiles were produced from TEC maps with one-hour interval for geographic latitude range from 35N to 75N. The structure of latitudinal profiles relates to the occurrence of the ionospheric trough. The location of the trough depends on season, local time, and both geophysical and geomagnetic conditions. The trough structure in GPS-TEC demonstrates a smooth shape. The trough occurrence as a distinguished structure is more distinct during winter. The relation of TEC in the trough minimum to the equator and polar walls amounted to a factor of 2–4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号