首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The relative importance of the main drivers of positive ionospheric storms at low-mid latitudes is studied using observations and modeling for the first time. In response to a rare super double geomagnetic storm during 07–11 November 2004, the low-mid latitude (17°–48°N geomag. lat.) ionosphere produced positive ionospheric storms in peak electron density (NmF2) in Japan longitudes (≈125°–145°E) on the day of main phase (MP1) onset (06:30 LT) and negative ionospheric storms in American longitudes (≈65°–120°W) on the following day of MP1 onset (13:00–16:00 LT). The relative effects of the main drivers of the positive ionospheric storms (penetrating daytime eastward electric field, and direct and indirect effects of equatorward neutral wind) are studied using the Sheffield University Plasmasphere Ionosphere Model (SUPIM). The model results show that the penetrating daytime (morning–noon) eastward electric field shifts the equatorial ionisation anomaly crests in NmF2 and TEC (total electron content) to higher than normal latitudes and reduces their values at latitudes at and within the anomaly crests while the direct effects of the equatorward wind (that reduce poleward plasma flow and raise the ionosphere to high altitudes of reduced chemical loss) combined with daytime production of ionisation increase NmF2 and TEC at latitudes poleward of the equatorial region; the later effects can be major causes of positive ionospheric storms at mid latitudes. The downwelling (indirect) effect of the wind increases NmF2 and TEC at low latitudes while its upwelling (indirect) effect reduces NmF2 and TEC at mid latitudes. The net effect of all main drivers is positive ionospheric storms at low-mid latitudes in Japan longitude, which qualitatively agrees with the observations.  相似文献   

2.
This paper presents traveling ionospheric disturbances (TIDs) observations from GPS measurements over the South African region during the geomagnetically disturbed period of 29–31 October 2003. Two receiver arrays, which were along two distinct longitudinal sectors of about 18°-20° and 27°-28° were used in order to investigate the amplitude, periods and virtual propagation characteristics of the storm induced ionospheric disturbances. The study revealed a large sudden TEC increase on 28 October 2003, the day before the first of the two major storms studied here, that was recorded simultaneously by all the receivers used. This pre-storm enhancement was linked to an X-class solar flare, auroral/magnetospheric activities and vertical plasma drift, based on the behaviour of the geomagnetic storm and auroral indices as well as strong equatorial electrojet. Diurnal trends of the TEC and foF2 measurements revealed that the geomagnetic storm caused a negative ionospheric storm; these parameters were depleted between 29 and 31 October 2003. Large scale traveling ionospheric disturbances were observed on the days of the geomagnetic storms (29 and 31 October 2003), using line-of-sight vertical TEC (vTEC) measurements from individual satellites. Amplitude and dominant periods of these structures varied between 0.08–2.16 TECU, and 1.07–2.13 h respectively. The wave structures were observed to propagate towards the equator with velocities between 587.04 and 1635.09 m/s.  相似文献   

3.
Ionosphere response to severe geomagnetic storms that occurred in 2001–2003 was analyzed using data of global ionosphere maps (GIM), altimeter data from the Jason-1 and TOPEX satellites, and data of GPS receivers on-board CHAMP and SAC-C satellites. This allowed us to study in detail ionosphere redistribution due to geomagnetic storms, dayside ionospheric uplift and overall dayside TEC increase. It is shown that after the interplanetary magnetic field turns southward and intensifies, the crests of the equatorial ionization anomaly (EIA) travel poleward and the TEC value within the EIA area increases significantly (up to ∼50%). GPS data from the SAC-C satellite show that during the main phase of geomagnetic storms TEC values above the altitude of 715 km are 2–3 times higher than during undisturbed conditions. These effects of dayside ionospheric uplift occur owing to the “super-fountain effect” and last few hours while the enhanced interplanetary electric field impinged on the magnetopause.  相似文献   

4.
The response of the ionospheric F-region in the equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 06–07 April 2000 has been studied in the present investigation. The geomagnetic storm reached a minimum Dst of −288 nT at 0100 UT on 07 April. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from GPS observations obtained at Imperatriz (5.5°S, 47.5°W; IMPZ), Brasília (15.9°S, 47.9°W; BRAZ), Presidente Prudente (22.12°S, 51.4°W; UEPP), and Porto Alegre (30.1°S, 51.1°W; POAL) during the period 05–08 April. Also, several GPS-based TEC maps are presented from the global GPS network, showing widespread and drastic TEC changes during the different phases of the geomagnetic storm. In addition, ion density measurements on-board the satellite Defense Meteorological Satellite Program (DMSP) F15 orbiting at an altitude of 840 km and the first Republic of China satellite (ROCSAT-1) orbiting at an altitude of 600 km are presented. The observations indicate that one of the orbits of the DMSP satellite is fairly close to the 4 GPS stations and both the DMSP F15 ion-density plots and the phase fluctuations from GPS observations show no ionospheric irregularities in the Brazilian sector before 2358 UT on the night of 06–07 April 2000. During the fast decrease of Dst on 06 April, there is a prompt penetration of electric field of magnetospheric origin resulting in decrease of VTEC at IMPZ, an equatorial station and large increase in VTEC at POAL, a low latitude station. This resulted in strong phase fluctuations on the night of 06–07 April, up to POAL. During the daytime on 07 April during the recovery phase, the VTEC observations show positive ionospheric storm at all the GPS stations, from IMPZ to POAL, and the effect increasing from IMPZ to POAL. This is possibly linked to the equatorward directed meridional wind. During the daytime on 08 April (the recovery phase continues), the VTEC observations show very small negative ionospheric storm at IMPZ but the positive ionospheric storm effect is observed from BRAZ to POAL possibly linked to enhancement of the equatorial ionospheric anomaly.  相似文献   

5.
GPS satellites data obtained at Bhopal (23.16° N, 77.36° E, geomagnetic latitude 14.23° N) India were analyzed to study the TEC changes during several geomagnetic storms (−300 nT < Dst < −50 nT) occurred in 2005–2007. We had segregated the storms according to the Dst value, i.e. moderate storms (−100 nT < Dst ? −50 nT), strong storms (−150 nT < Dst < −100 nT), and severe storms (Dst less than −150 nT). Total of 21 geomagnetic storms (10 moderate, 9 strong, 2 severe) are considered for the present study. Deviation in vertical total electron content (VTEC) during the main phase of the storm was found to be associated with the prompt penetration of electric field originated due to the under-shielding and over-shielding conditions for almost all geomagnetic storms discussed in this paper. For most of the storms VTEC shows the positive percentage deviation during the main phase while it shows positive as well as the negative deviation during the recovery phase of the storms. The −80% deviation in VTEC was found for geomagnetic storm occurred on July 17, 2005 and the negative trend continued for recovery phase of the storm. This was mainly due to the thermospheric composition changes by Joule heating effect at auroral latitudes that generate electric field disturbance at low latitudes. Traveling ionospheric disturbances (TIDs) were responsible for the formation of wave like nature in VTEC for the storms occurred on May 15, 2005, whereas it was not observed for storm occurred on August 24, 2005.  相似文献   

6.
The total electron content (TEC) in the equatorial and low-latitude ionosphere over Brazil was monitored in two dimensions by using 2011 data from the ground-based global navigation satellite system (GNSS) receiver network operated by the Brazilian Institute for Geography and Statistics. It was possible to monitor the spatial and temporal variations in TEC over Brazil continuously during both day and night with a temporal interval of 10 min and a spatial resolution of about 400 km. The daytime equatorial ionization anomaly (EIA) and post-sunset plasma enhancement (PS-EIA) were monitored over an area corresponding to a longitudinal extension of 4000 km in South America. Considerable day-to-day variation was observed in EIA and PS-EIA. A large latitudinal and longitudinal gradient of TEC indicated a significant ionospheric range error in application of the GNSS positioning system. Large-scale plasma bubbles after sunset were also mapped over a wide range. Depletions with longitudinally separated by more than 800 km were observed. They were extended by more than 2000 km along the magnetic field lines and drifted eastward. It is expected that 2-dimensional TEC mapping can serve as a useful tool for diagnosing ionospheric weather, such as temporal and spatial variation in the equatorial plasma trough and crest, and particularly for monitoring the dynamics of plasma bubbles.  相似文献   

7.
In this paper, the peculiarities of ionospheric response to geomagnetic disturbances observed at the decay and minimum of solar activity (SA) in the period 2004–2007 are investigated with respect to different geomagnetic conditions. Data from ionospheric stations and results of total electron content (TEC) measurements made at the network of GPS ground-based receivers located within the latitude–longitude sector (20–70°N, 90–160°Е) are used in this study. Three groups of anomalous ionospheric response to geomagnetic disturbances have been observed during low solar activity. At daytime, the large-scale traveling ionospheric disturbances (LSTIDs) could generally be related to the main phase of magnetic storm. Quasi-two-days wavelike disturbances (WLDs) have been also observed in the main phase independent of the geomagnetic storm intensity. Sharp electron density oscillations of short duration (OSD) occurred in the response to the onset of both main and recovery phases of the magnetic storm in the daytime at middle latitudes. A numerical model for ionosphere–plasmasphere coupling was used to interpret the occurrence of LS TIDs. Results showed that the LSTIDs might be associated with the unexpected lifting of F2 layer to the region with the lower recombination rate by reinforced meridional winds that produces the increase of the electron density in the F2 layer maximum.  相似文献   

8.
2017年9月8日发生了一次强磁暴,Kp指数最大值达到8.利用区域电离层格网模型(Regional Ionosphere Map,RIM)和区域ROTI(Rate of TEC Index)地图,分析了磁暴期间中国及其周边地区电离层TEC扰动特征和低纬地区电离层不规则体的产生与发展情况,同时利用不同纬度IGS(International GNSS Service)测站BJFS(39.6°N,115.9°E),JFNG(30.5°N,114.5°E)和HKWS(22.4°N,114.3°E)的GPS双频观测值,获取各测站的ROTI和DROT(Standard Deviation of Differential ROT)指数变化趋势.结果表明:此次磁暴发生期间电离层扰动先以正相扰动为主,主要发生在中低纬区域,dTEC(differential TEC)最大值达到14.9TECU,随后电离层正相扰动逐渐衰减,在低纬区域发生电离层负相扰动,dTEC最小值达到-7.2TECU;在12:30UT-13:30UT时段,中国南部低纬地区发生明显的电离层不规则体事件;相比BJFS和JFNG两个测站,位于低纬的HKWS测站的ROTI和DROT指数变化更为剧烈,这表明电离层不规则体结构存在纬度差异.   相似文献   

9.
The modifications induced in the dynamics of the ionosphere by the major Japan earthquake (EQ) of March 11, 2011 (epicenter at 38.322°N, 142.369°E, M = 8.9) in presence of a magnetic storm are examined by mapping latitudinal variations of F-layer ionization density (NmF2) from 22 stations covering the epicenter zone. The changes forced into the Total Electron Content (TEC) by the major EQ in the magnetic storm ambiance are also examined from the GPS data collected at Guwahati (26° 10′ N, 91° 45’ E), situated in the major fault system of East Asia. The contributions of pre-seismic electric field as well as of magnetic storm time electric field in the observed density variations are brought into the ambit of discussion. The influence of lower atmosphere in shaping TEC features during the study case is highlighted. The effects of solar activity on density variations during such complex ambiances are also addressed.  相似文献   

10.
The equatorial ionosphere has been known to become highly disturbed and thus rendering space-based navigation unreliable during space weather events, such as geomagnetic storms. Modern navigation systems, such as the Global Positioning System (GPS) use radio-wave signals that reflect from or propagate through the ionosphere as a means of determining range or distance. Such systems are vulnerable to effects caused by geomagnetic storms, and their performance can be severely degraded. This paper analyses total electron content (TEC) and the corresponding GPS scintillations using two GPS SCINDA receivers located at Makerere University, Uganda (Lat: 0.3o N; Lon: 32.5o E) and at the University of Nairobi, Kenya (Lat: 1.3o S; Lon: 36.8o E), both in East Africa. The analysis shows that the scintillations actually correspond to plasma bubbles. The occurrence of plasma bubbles at one station was correlated with those at the other station by using observations from the same satellite. It was noted that some bubbles develop at one station and presumably “die off” before reaching the other station. The paper also discusses the effects of the geomagnetic storm of the 24–25 October 2011 on the ionospheric TEC at the two East African stations. Reductions in the diurnal TEC at the two stations during the period of the storm were observed and the TEC depletions observed during that period showed much deeper depletions than on the non-storm days. The effects during the storm have been attributed to the uplift of the ionospheric plasma, which was then transported away from this region by diffusion along magnetic field lines.  相似文献   

11.
Equatorial plasma bubbles (EPBs) are common features of the equatorial and low-latitude ionosphere and are known to cause radio wave scintillation which leads to the degradation of communication and navigation systems. Although these structures have been studied for decades, a full understanding of their evolution and dynamics remains important for space weather mitigation purposes. In this study, we present cases of EPBs occurrences around April and July 2012 geomagnetic storm periods over the African equatorial sector. The EPBs were observed from the Communications/Navigation Outage Forecasting System (C/NOFS) and generally correlated well to the ionospheric irregularities observed from the Global Positioning System total electron content (GPS-TEC) measurements (rate of TEC change, ROT). This study revealed that the evolution of the EPBs during moderate storms is controlled by the strength of the daytime equatorial electrojet (EEJ) currents regardless of the strength of the equatorial ionization anomaly (EIA), the latter is observed during the July storm case in particular. These effects were more evident during the main and part of the early recovery phases of the geomagnetic storm days considered. However, the evening hours TEC gradients between regions of the magnetic equator and ionization crests also played roles in the existence of ionospheric irregularities.  相似文献   

12.
The responses of the ionospheric F region using GPS–TEC measurements during two moderate geomagnetic storms at equatorial, low-, and mid-latitude regions over the South American and African sectors in May 2010, during the ascending phase of solar cycle 24, are investigated. The first moderate geomagnetic storm studied reached a minimum Dst value of −64 nT at 1500 UT on 02 May 2010 and the second moderate geomagnetic storm reached a minimum Dst value of −85 nT at 1400 UT on 29 May 2010. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from Global Positioning System (GPS) observations from the equatorial to mid-latitude regions in the South American and African sectors. Our results obtained during these two moderate geomagnetic storms from both sectors show significant positive ionospheric storms during daytime hours at the equatorial, low-, and mid-latitude regions during the main and recovery phases of the storms. The thermospheric wind circulation change towards the equator is a strong indicator that suggests an important mechanism is responsible for these positive phases at these regions. A pre-storm event that was observed in the African sector from low- to the mid-latitude regions on 01 May 2010 was absent in the South American sector. This study also showed that there was no generation or suppression of ionospheric irregularities by storm events. Therefore, knowledge about the suppression and generation of ionospheric irregularities during moderate geomagnetic storms is still unclear.  相似文献   

13.
This investigation presents observations related to the generation of equatorial ionospheric irregularities (also known as equatorial spread F (ESF)) including ionospheric plasma bubbles and dynamic behavior of the ionospheric F-region in the South American sector during an intense geomagnetic storm in December 2006 (a period of low solar activity). In this work, ionospheric sounding observations and GPS data obtained between 13 and 16 December 2006 at several stations in the South American sector are presented. On the geomagnetically disturbed night of 14 and 15 December, ionospheric plasma bubbles were observed after an unusual uplifting of the F-region during pre-reversal enhancement (PRE) period. The unusual uplifting of the F-region during PRE was possibly associated with prompt penetration of electric field of magnetospheric origin. During the geomagnetic disturbance night of 14 and 15 December, strong oscillations due to the propagation of traveling ionospheric disturbances (TIDs) by the Joule heating in the auroral region were observed in the F-region at São José dos Campos (SJC, 23.2°S, 45.9°W; dip latitude 17.6°S), Brazil, and Port Stanley (PST, 51.6°S, 57.9°W; geom. latitude 41.6°S). The VTEC-GPS observations presented on the night of 14 and 15 December 2006 show both positive and negative storm phases in the South American sector, possibly due to changes in the large-scale wind circulation and changes in the O/N2 ratio in the southern hemisphere, respectively.  相似文献   

14.
We use observations of ionospheric scintillation at equatorial latitudes from two GPS receivers specially modified for recording, at a sampling rate of 50 Hz, the phase and the amplitude of the L1 signal and the Total Electron Content (TEC) from L1 and L2. The receivers, called GISTM (GPS Ionospheric Scintillation and TEC Monitor), are located in Vietnam (Hue, 16.4°N, 107.6°E; Hoc Mon, 10.9°N, 106.6°E). These experimental observations are analysed together with the tomographic reconstruction of the ionosphere produced by the Multi-Instrument Data Analysis System (MIDAS) for investigating the moderate geomagnetic storm which occurred on early April 2006, under low solar activity. The synergic adoption of the ionospheric imaging and of the GISTM measurements supports the identification of the scale-sizes of the ionospheric irregularities causing scintillations and helps the interpretation of the physical mechanisms generating or inhibiting the appearance of the equatorial F layer irregularities. In particular, our study attributes to the turning of the IMF (Interplanetary Magnetic Field) between northward and southward direction an important role in the inhibition of the generation of spread F irregularities resulting in a lack of scintillation enhancement in the post-sunset hours.  相似文献   

15.
The interplanetary magnetic field, geomagnetic variations, virtual ionosphere height h′F, and the critical frequency foF2 data during the geomagnetic storms are studied to demonstrate relationships between these phenomena. We study 5-min ionospheric variations using the first Western Pacific Ionosphere Campaign (1998–1999) observations, 5-min interplanetary magnetic field (IMF) and 5-min auroral electrojets data during a moderate geomagnetic storm. These data allowed us to demonstrate that the auroral and the equatorial ionospheric phenomena are developed practically simultaneously. Hourly average of the ionospheric foF2 and h′F variations at near equatorial stations during a similar storm show the same behavior. We suppose this is due to interaction between electric fields of the auroral and the equatorial ionosphere during geomagnetic storms. It is shown that the low-latitude ionosphere dynamics during these moderate storms was defined by the southward direction of the Bz-component of the interplanetary magnetic field. A southward IMF produces the Region I and Region II field-aligned currents (FAC) and polar electrojet current systems. We assume that the short-term ionospheric variations during geomagnetic storms can be explained mainly by the electric field of the FAC. The electric fields of the field-aligned currents can penetrate throughout the mid-latitude ionosphere to the equator and may serve as a coupling agent between the auroral and the equatorial ionosphere.  相似文献   

16.
The global distribution of low-latitude plasma blobs was investigated by in-situ plasma density measurements from the Korea Multi-Purpose Satellite-1 (KOMPSAT-1) and Defense Meteorological Satellite Program (DMSP) F15. In the observations, blobs occurred in the longitude sector where the activity of the equatorial plasma bubble (EPB) was appreciable, and additional blobs were found at the lower (KOMPSAT-1) altitude as in the EPBs. However, several notable differences exist between the distributions of EPBs and blobs. First, KOMPSAT-1 found few blobs around 0°E in March and June, as did DMSP F15 from 30°W to 120°E for every season. Second, the overall occurrences in December and March at the DMSP F15 (840 km) altitude were somewhat lower than expected from those of the EBPs. Third, at the DMSP F15 altitude, the occurrence probability of plasma blobs was less controlled by yearly variations in the solar activity. These results imply that topside ionospheric conditions as well as the existence of EPBs control further development of blobs. Additionally, it was found that the blob latitudes became higher as the yearly solar activity increased. Moreover, most of the blobs were encountered in the winter hemisphere, possibly due to the low ambient density.  相似文献   

17.
磁暴期间全球TEC扰动特性分析   总被引:3,自引:1,他引:2       下载免费PDF全文
磁暴期间白天电离层总电子含量(TEC)大幅度扰动.TEC扰动与磁暴发生时的世界时(UT)有关.利用7年的数据对TEC对磁暴的响应进行统计研究.结果显示,磁暴期间白天TEC增大明显,且在午后TEC的增大比例有一个高峰.在18:00UT-04:00UT,南美地区与其他地区相比TEC增长较大,这可能与白天的光照有关.为了研究TEC变化与磁暴的关系,结合同样时间段的Dst指数,把TEC数据分为磁暴日(Dst<-100nT)和平静日(Dst>-50nT).研究发现,将TEC前移2h,低纬日侧地区TEC增大值随着世界时的变化与Dst变化的负相关性较好,相关系数为-0.75.在中纬度地区,将TEC扰动前移1h,相关系数为-0.61.这可能是行进式大气扰动携带着赤道向的子午风,由极区向低纬传播引起.可以认为,TEC的变化可能是由磁暴引起的.在高纬地区,TEC增大值随着世界时的变化与Dst变化的相关性较差.这可能是由于太阳高度角较低,光辐射通量较小,导致电子密度的增加不明显.   相似文献   

18.
The responses of the thermospheric density and ionospheric foF2 to the intense magnetic storms event on 17–20 April were analyzed by using data from CHAMP/STAR and ionosonde stations respectively, and NRLMSISE-00 and IRI-2007 models were used to simulate. The models can capture the tendency of changes, especially under quiet or moderate geomagnetic conditions, but are less accurate under geomagnetic storms. The thermospheric density is sensitive to the EUV emission and geomagnetic activity, and double-peak structure appeared in the dayside. On 19 April dayside, TADs traveled toward the equator with phase speeds of the order of 300–750 m/s, interfered near the equator to produce a total density perturbation of 25%, and then passed through each other and into the opposite hemisphere. For ionospheric foF2, there are non-symmetric hemispheres’ features during the intense geomagnetic activities. In details, middle latitudes in the north and high latitudes in both hemispheres are negative ionospheric storms, and the maximum amplitudes of δfoF2δfoF2 is about 60%, but the amplitudes decrease from the higher to lower latitudes in the Southern Hemisphere. Meanwhile, the equatorial station shows positive phase, and the maximum value is about 100%. Finally, the mechanisms for these features will be discussed in this study.  相似文献   

19.
This paper presents results pertaining to the response of the mid-latitude ionosphere to strong geomagnetic storms that occurred from 31 March to 02 April 2001 and 07–09 September 2002. The results are based on (i) Global Positioning Systems (GPSs) derived total electron content (TEC) variations accompanying the storm, (ii) ionosonde measurements of the ionospheric electrodynamic response towards the storms and (iii) effect of storm induced travelling ionospheric disturbances (TIDs) on GPS derived TEC. Ionospheric data comprising of ionospheric TEC obtained from GPS measurements, ionograms, solar wind data obtained from Advanced Composition Explorer (ACE) and magnetic data from ground based magnetometers were used in this study. Storm induced features in vertical TEC (VTEC) have been obtained and compared with the mean VTEC of quiet days. The response of the mid-latitude ionosphere during the two storm periods examined may be characterised in terms of increased or decreased level of VTEC, wave-like structures in VTEC perturbation and sudden enhancement in hmF2 and h′F. The study reveals both positive and negative ionospheric storm effects on the ionosphere over South Africa during the two strong storm conditions. These ionospheric features have been mainly attributed to the travelling ionospheric disturbances (TIDs) as the driving mechanism for the irregularities causing the perturbations observed. TEC perturbations due to the irregularities encountered by the satellites were observed on satellites with pseudo random numbers (PRNs) 15, 17, 18 and 23 between 17:00 and 23:00 UT on 07 September 2002.  相似文献   

20.
We present an observational study of magnetospheric and ionospheric disturbances during the December 2006 intense magnetic storm associated with the 4В/Х3.4 class solar flare. To perform the study we utilize the ground data from North–East Asian ionospheric and magnetic observatories (60–72°N, 88–152°E) and in situ measurements from LANL, GOES, Geotail and ACE satellites. The comparative analysis of ionospheric, magnetospheric and heliospheric disturbances shows that the interaction of the magnetosphere with heavily compressed solar wind and interplanetary magnetic field caused the initial phase of the magnetic storm. It was accompanied by the intense sporadic E and F2 layers and the total black-out in the nocturnal subauroral ionosphere. During the storm main phase, LANL-97A, LANL 1994_084, LANL 1989-046 and GOES_11 satellites registered a compression of the dayside magnetosphere up to their orbits. In the morning–noon sector the compression was accompanied by an absence of reflections from ionosphere over subauroral ionospheric station Zhigansk (66.8°N, 123.3°E), and a drastic decrease in the F2 layer critical frequency (foF2) up to 54% of the quite one over subauroral Yakutsk station (62°N, 129.7°E). At the end of the main phase, these stations registered a sharp foF2 increase in the afternoon sector. At Yakutsk the peak foF2 was 1.9 time higher than the undisturbed one. The mentioned ionospheric disturbances occurred simultaneously with changes in the temperature, density and temperature anisotropy of particles at geosynchronous orbit, registered by the LANL-97A satellite nearby the meridian of ionospheric and magnetic measurements. The whole complex of disturbances may be caused by radial displacement of the main magnetospheric domains (magnetopause, cusp/cleft, plasma sheet) with respect to the observation points, caused by changes in the solar wind dynamic pressure, the field of magnetospheric convection, and rotation of the Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号