首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
The aim of this paper is to consider an influence of solar and geomagnetic activity level variations on frequency and stochastic parameters of mid-latitude ionosphere sporadic-E layer. Critical frequency of sporadic-E layer, foEs, relative excess of sporadic ionization over monthly median values, foEs  foEm/foEm, and probability of Es layer appearance, PEs, are considered. It has been found that sporadic-E layer parameters response to solar and geomagnetic activity level variations can be both positive (foEs and PEs values are increase) and negative (foEs and PEs values are decrease). In particular, sporadic-E layers response to solar and geomagnetic activity variations are different depending upon layer intensity. It is suggested that revealed differences may be associated with dissimilarity of the layers ion composition (high-intensive layers are composed from metallic ions and low intensive composed from molecular ions).  相似文献   

2.
The total electron content (TEC) derived from the global positioning system (GPS) and the F2-layer peak electron density obtained from Digisonde data have been used to study the diurnal, seasonal and solar activity variations of the ionospheric equivalent slab thickness (τ) over three European stations located at Pruhonice (50.0°N, 15.0°E), Ebro (40.8°N, 0.5°E) and El Arenosillo (37.1°N, 353.3°E). The diurnal variation of the τ is characterized by daytime values lower than nighttime ones for all seasons at low solar activity while daytime values larger than nighttime characterizes the diurnal variation for summer at high solar activity. A double peak is noticeable at dusk and at dawn, better expressed for winter at low solar activity. The seasonal variations of τ depend on local time and solar activity, the daytime values of τ increases from winter to summer whereas nighttime values of τ show the opposite. The effect of the solar activity on τ depends on local time and season, there being very sensitive for winter nighttime values of τ. The results of this study are compared with those presented by other authors.  相似文献   

3.
关于地磁和太阳活动对Es层形成的影响,已有研究所得结论不同甚至相互矛盾.为研究太阳和地磁活动对Es层的影响,对4个太阳活动周期(1970-2010年)高中低纬度站点每小时Es层的参数进行了分析.结果表明太阳和地磁活动对Es层形成确实具有影响,而且不同纬度Es层与太阳和地磁活动的相关系数也不相同.同时对Es层各参数对于太阳和地磁活动不同反应的原因进行了解释.   相似文献   

4.
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity.  相似文献   

5.
对2003年(太阳活动较高年)至2007年(太阳活动低年) CHAMP卫星的热层大气密度观测数据进行了经验正交函数(EOF)分析, 得到了400 km高度上白天平均大气密度ρ的太阳活动周变化与年度变化等不同变化分量. 研究结果表明, ρ受太阳活动影响较大, 其太阳周变化分量与F10.7指数变化之间的相关系数可高达94.5 %; ρ的太阳周变化分量随纬度增加而减小, 且在中高纬地区, 南半球的值明显大于北半球的值, 在低纬地区则出现基本对称的双峰分布, 即赤道质量密度异常(EMA)结构. 在ρ的年变化中, 呈现出明显的季节变化, 即夏季低冬季高; 同时ρ的年变化幅度随太阳活动增加而增强, 随纬度增加而增强. 将本文结果与经验模式NRLMSISE00在观测条件下的输出数据进行对比, 发现两者的太阳周变化与年变化分量基本一致, 但本文观测数据的太阳周成分随纬度变化略小, 年变化幅度略大, 且NRLMSISE00模式不能再现EMA结构. 研究结果对揭示热层气候学变化特征具有重要意义.   相似文献   

6.
Ionosonde data of a mid latitude station Novosibirsk (Geog. Lat. 54.6°N, Geog. Long. 83.2°E) has been analyzed for the years 1997–2006 that covers the major part of solar cycle 23. Our results show the presence of winter anomaly in the daytime F2 layer critical frequency during different phases of solar activity. Results also reveal a semiannual variation of foF2 with two maxima and a minimum that always appears in summer. While the first maximum is in the spring equinox, the second one is found to shift from autumn to winter with the increase of solar activity. The maximum height of F2 layer during the daytime shows variation with the solar activity. It is higher during the higher activity periods and lower during the periods of low activity. Results of ionosonde observations have been compared with those obtained from IRI-2007 model and it is found that model reproduces gross features of foF2 variation. However, the modeled hmF2 variations during equinoxes are significantly different from the ones derived using the ionosonde data. The model also underestimates the hmF2 values.  相似文献   

7.
分析研究了空间碎片数随太阳辐射流量F10.7的变化;给出预报F10.7长期变化的计算方法和预测空间碎片数的数学模型。结果显示:①强太阳活动造成空间碎片年增长率下降;②空间碎片数与太阳活动11年变化密切相关,相关数为0.9;③空间碎片增长率约为发射率的两倍;④若发射率保持不变,则到2020年,大于10cm的碎片数将达到14500;⑤若小碎片的增长为大碎片增长的两倍,则到2020年,大于1cm的碎片数可达125000。  相似文献   

8.
中国典型区域Es特性研究   总被引:3,自引:1,他引:2  
利用中国海口、长春和拉萨三个站1976-1986年一个太阳周的观测数据, 对中国典型区域的Es特性进行了研究. 分析了不同强度Es (f0Es > 3, 5, 7, 9MHz)出现概率随本地时、季节以及太阳活动的变化规律, 并对电离层Es遮蔽情况(包括全遮蔽和半遮蔽)进行了系统分析. 研究结果表明, 各种强度的Es出现概率均是白天大于夜间, 夏季高于其他季节, 随太阳活动性变化规律不明显, 地区差异较大, 大部分情况拉萨站Es出现概率最高; 对于全遮蔽和半遮蔽特性, 不同站也表现出不同的分布规律.   相似文献   

9.
Variability of vertical TEC recorded at Fuzhou (26.1°N, 119.3°E, geomagnetic latitude 14.4°N), Xiamen (24.5°N, 118.1°E, geomagnetic latitude 13.2°N), Nanning (22.8°N, 108.3°E, geomagnetic latitude 11.4°N), China, during the low solar activity in 2006–2007 have been analyzed and discussed. Remarkable seasonal anomaly was found over three stations with the highest value during spring and the lowest value during summer. The relative standard deviation of VTEC is over 20% all the time, with steady and smooth variation during daytime while it has a large fluctuation during nighttime. The biggest correlation coefficient was found in the VTEC-sunspot pair with a value of over 0.5. It seems that solar activity has a better correlation ship than geomagnetic activity with the variation of VTEC and better correlations are found with more long-term data when comparing our previous study. The results of comparing observation with model prediction in three sites reveal again that the SPIM model overestimates the measured VTEC in the low latitude area.  相似文献   

10.
In this research, it is presented the daytime amplitude scintillations recorded at VHF frequency (244 MHz) at an Indian low-latitude station, Waltair (17.7°N, 83.3°E) during seven continuous years (1997–2003). Contrary to the nighttime scintillation seasonal trends, the occurrence of daytime scintillations maximizes during summer followed by winter and the equinox seasons. The fade depths, scintillation indices and the patch durations of daytime scintillations are meager when compared with their nighttime counterparts. A co-located digital high frequency (HF) ionosonde radar confirms the presence of sporadic (Es) layers when daytime scintillations are observed. The presence of daytime scintillations is evident when the critical frequency of the Es-layer (foEs) is ≥4 MHz and Es-layers are characterized by a highly diffuse range spread Es echoes as can be seen on ionograms. It is surmised that the gradient drift instability (GDI) seems to be the possible mechanism for the generation of these daytime scintillations. It is quite likely that the spread Es-F-layer coupling is done through polarization electric fields (Ep) that develop inside the destabilized patches of sporadic E layers, which are mapped up to the F region along the field lines as to initiate the daytime scintillations through the GDI mechanism. Further, the presence of additional stratification of ionosphere F-layer, popularly known as the F3-layer, is observed on ionograms once the Es-layers and daytime scintillations are ceased.  相似文献   

11.
12.
Based on the method for establishing a global plasmaspheric model using observations from COSMIC and MetOp-A orbit determination GNSS receivers, Chen et al. (2017) obtained a global plasmaspheric total electron content product with a spatial resolution of 2.5° × 5° and a time resolution of 4 h. In this paper, we use those global plasmaspheric electron content product in 2008, 2010, 2011, 2012, 2014 for 1446 days to establish a global plasmaspheric empirical model based on empirical orthogonal function (EOF). The model can well characterize the spatiotemporal variation of plasmaspheric electron content (PEC) and the influence of solar radiation on it. Only the first four orders of EOF sequences can characterize the 98.43% features of the original PEC dataset. The principal component coefficient Pk is decomposed twice during modeling, and the combination of trigonometric function and linear function is used to model Pk to characterize the solar cycle, annual cycle, semi-annual cycle and quarter-cycle variation. We compare the PEC model values with the actual observation data, the results show that the empirical PEC model values are highly correlated with the actual observations. The correlation between the two is above 0.96, and the RMS maximum of the difference between the PEC model values and the observed values are 0.70 TECU, and the average of the difference between the PEC model values and the observed values are −0.18 TECU, respectively. In addition, we validate the reliability of the global plasmaspheric model established by two empirical orthogonal function decomposition method using actual observation data, according to the global distribution of the differences between the PEC model values and the observed values in low solar activity and high solar activity, it can be seen that under low solar activity and high solar activity conditions, the model has good adaptability.  相似文献   

13.
Based on the ISL data detected by DEMETER satellite, the solar cycle variation in electron density (Ne) and electron temperature (Te) were studied separately in local daytime 10:30 and nighttime 22:30 during 2005–2010 in the 23rd/24th solar cycles. The semi-annual, annual periods and decreasing trend with the descending solar activity were clearly revealed in Ne. At middle and high latitudes, there exhibited phase shift and even reversed annual variation over Southern and Northern hemisphere, and the annual variation amplitudes were asymmetrical at both hemispheres in local daytime. In local nighttime, the annual variations of Ne at south and north hemispheres were symmetrical at same latitudes, but the annual variation amplitudes at different latitudes differed largely, showing obviously zonal features. As for Te, the phase shift in annual variations was not as apparent as Ne with the increase of latitudes at Southern and Northern hemisphere in local daytime. While in local nighttime the reversed annual variations of Te were shown at low latitudinal areas, not at high latitudes as those in Ne. The correlation study on Ne and Te illustrated that, in local daytime, Ne and Te showed strong negative correlation at equator and low latitudes, but during the solar minimum years the correlation between Ne and Te changed to be positive at 25–30° latitudes in March 2009. The correlation coefficient R between Ne and Te also showed semi-annual periodical variations during 2005–2010. While in local nighttime, Ne and Te exhibited relatively weak positive correlation with R being about 0.6 at low latitudes, however no correlation beyond latitudes of 25° was obtained.  相似文献   

14.
第23太阳活动周武汉站电离层TEC特征分析   总被引:1,自引:1,他引:0  
利用武汉站(30.5°N, 114.4°E)1997年1月1日至2007年12月31日电离层TEC、太阳黑子数及地磁指数等资料, 分析了第23周武汉站TEC的周日变化、季节变化、半年变化以及与太阳活动的相关性等特征; 以2006年4月13-17日发生的磁暴为例, 讨论了武汉站TEC对磁暴的响应以及可能的机理. 结果表明,武汉站电离层TEC在太阳活动高、低年均呈典型的周日变化特征; 冬季异常和半年异常特征明显, 且受太阳活动强弱影响; TEC和太阳黑子数年均值相关系数为0.9611; TEC对磁暴的响应可能是由磁层穿透电场和中性风共同作用导致的, 具体影响机制有待深入研究.   相似文献   

15.
A study on the variability of the equatorial ionospheric electron density was carried out at fixed heights below the F2 peak using one month data for each of high and low solar activity periods. The data used for this study were obtained from ionograms recorded at Ilorin, Nigeria, and the study covers height range from 100 km to the peak of the F2 layer for the daytime hours and height range from 200 km to the peak of the F2 layer for the nighttime hours. The results showed that the deviation of the electron density variation from simple Chapman variation begins from an altitude of about 200 km for the two months investigated. Daytime minimum variability of between 2.7% and 9.0% was observed at the height range of about 160 and 200 km during low solar activity (January 2006) and between 3.7% and 7.8% at the height range of 210 and 260 km during high solar activity (January 2002). The nighttime maximum variability was observed at the height range of 210 and 240 km at low solar activity and at the height range of 200 and 240 km at high solar activity. A validation of IRI-2007 model electron density profile’s prediction was also carried out. The results showed that B0 option gives a better prediction around the noontime.  相似文献   

16.
利用电波环境观测网曲靖站电离层垂直探测仪数据(2008-2018),分析了该站电离层多参数(包括fmin,f0Es,h'Es,f0E,f0F1,f0F2,h'F,MUF(3000)F2等)随太阳活动、季节、地方时的变化特征。结果表明,fmin,f0Es,h'Es随太阳活动变化不明显,f0E,f0F1,f0F2,h'F,MUF(3000)F2与太阳活动变化具有相关性,f0F2经常发生日落增强现象,同时各自具有独立性;与拉萨、乌鲁木齐地区f0F2,h'F,f0Es变化特征对比,发现地方时与月份变化趋势相同,但是极值出现的位置有所不同,这可能与各地区的地理纬度和地形等因素有关;h'F夜间大于白天,在日出日落时段有突然上升现象,冬季的h'F一般都小于其他季节;MUF(3000)F2与f0F2的变化特征相似,白天值高于夜晚值,春秋分季高于夏冬季,太阳活动高年日落后MUF(3000)F2一直维持较高值并持续到03:00-04:00 LT。   相似文献   

17.
The behavior of critical frequencies of ionospheric E and F2 layers (foE & foF2) along with minimum ionospheric frequency (fmin) is studied for solar minima of cycle 21 (1986), 22 (1996) and 23 (2008) over Karachi (24.95°N, 67.13°E), Pakistan. The station is located at the crest of equatorial ionization anomaly region. Beside seasonal differences, pronounced change in the values of frequencies is noted from one solar minimum to another solar minimum. A strong and direct correlation of foF2 with Smoothed Sunspot Number (SSN) and F10.7?cm solar flux is observed. In the minimum of cycle 23, reduction in foF2 is noted due to reduction of solar EUV as compared to other minima. Also disappearance of semi-annual variations in foF2 is noted in cycle 23 minimum. Unexpectedly higher values of foE and fmin are observed in minimum of cycle 23 as compared to other minima. It is difficult to explain this unusual behavior of fmin and foE along with disappearance of semi-annual variation in foF2. It is possible that during very low solar activity, thermospheric conditions are changed which in turn altered the ionosphere. Further investigation of atmosphere-ionosphere coupling is required to understand this complex behavior. On comparison of observed values with IRI-2016, higher deviations are observed in foE before noon hours while in case of foF2, large deviations are noted during daytime. The absence of foF2 semi-annual variation in cycle 23 is not reproduced by IRI-2016. It is suggested that IRI-2016 need some modification for extremely low solar activity condition.  相似文献   

18.
电离层总电子含量(TEC)不仅是分析电离层形态的关键参数之一,同时为导航及定位等空间应用系统消除电离层附加时延提供重要支撑。由于电离层TEC的时空变化特征,本文融合因果卷积和长短时记忆网络,以太阳活动指数F10.7、地磁活动指数Dst和电离层TEC历史数据作为特征输入,构建深度学习模型,实现提前24 h预报电离层TEC。进一步利用2005-2013年连续9年的CODE TEC数据,全面评估了模型在北京站(40°N,115°E)、武汉站(30.53°N,114.36°E)和海口站(20.02°N,110.38°E)的预报性能。结果显示不同太阳活动条件下三个站的TEC值与真实测量值的相关系数都大于0.87,均方根误差大都集中在0~1 TECU以内,且模型预报精度与纬度、太阳、地磁活动程度、季节变化相关。与仅由长短时记忆网络构成的预报模型相比,本实验模型均方根误差降低了15%,为电离层TEC预报模型的实际应用提供了参考。   相似文献   

19.
A database of electron temperature (Te) measurements comprising of most of the available satellite measurements in the topside ionosphere is used for studying the solar activity variations of the electron temperature Te at different latitudes, altitudes, local times and seasons. The Te data are grouped into three levels of solar activity (low, medium, high) at four altitude ranges, for day and night, and for equinox and solstices. We find that in general Te changes with solar activity are small and comparable in magnitude with seasonal changes but much smaller than the changes with altitude, latitude, and from day to night. In all cases, except at low altitude during daytime, Te increases with increasing solar activity. But this increase is not linear as assumed in most empirical Te models but requires at least a parabolic approximation. At 550 km during daytime negative as well as positive correlation is found with solar activity. Our global data base allows to quantify the latitude range and seasonal conditions for which these correlations occur. A negative correlation with solar activity is found in the invdip latitude range from 20 to 55 degrees during equinox and from 20 degrees onward during winter. In the low latitude (20 to −20 degrees invdip) F-region there is almost no change with solar activity during solstice and a positive correlation during equinox. A positive correlation is also observed during summer from 30 degrees onward.  相似文献   

20.
用特征向量分析法对第23太阳活动周天津静海磁场强度水平分量H的时均值进行研究,分析行星际磁场扇形结构的地磁效应(简称扇形效应)对中低纬地磁场H分量日变化的贡献.研究结果表明,中低纬扇形效应为3~11nT,在太阳活动高年扇形效应达到最大值(约11nT),低年达到最小值(约3nT).太阳活动高年扇形效应引起的地磁H分量值变化与太阳活动低年的情况相反,但是扇形效应在夏季对地磁H分量的影响较小.太阳活动高年扇形效应日均值的增减与上升年的相反,与下降年相同,夏季扇形效应平均增量最小且无规律.春、夏和秋三个季节的扇形效应最大值都出现在太阳活动高年,冬季的扇形效应在太阳活动峰年两年后才出现最大值(约11nT).在太阳活动低年(或高年),当扇形磁场背离(或指向)太阳时,夏季扇形效应白天引起地磁H分量增大(或减小),夜间导致地磁H分量减小(或增大),其他季节全天都会导致地磁H分量减小(或增大).用特征向量推断行星际磁场扇形极性的符合率在春夏秋三个季节高达60%,在冬季为55%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号