首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Great progress has been made in the research of solar corona and interplanetary physics by the Chinese scientists during the past two years (2014-2016). Nearly 100 papers were published in this area. In this report, we will give a brief review to these progresses. The investigations include:solar corona, solar wind and turbulence, superhalo electron and energetic particle in the inner heliosphere, solar flares and radio bursts, Coronal Mass Ejections (CMEs) and their interplanetary counterparts, Magnetohydrodynamic (MHD) numerical modeling, CME/shock arrival time prediction, magnetic reconnection, solar variability and its impact on climate. These achievements help us to better understand the evolution of solar activities, solar eruptions, their propagations in the heliosphere, and potential geoeffectiveness. They were achieved by the Chinese solar and space scientists independently or via international collaborations.   相似文献   

2.
Very low frequency interferometry among two astronomical experiments has been proposed and accepted for further study for the second phase of China’s lunar exploration programme (the Chang’E Programme), which is envisaged to operate a lander and a rover on the surface of the moon. This experiment is an interferometer experiment in the very low frequency (VLF, f < 15 MHz) regime of radio frequencies with at least degree-level angular resolution. The goals include observing solar storm activities, Coronal Mass Ejections, Auroral Kilometric Radiation, and planetary radiation in the solar system, studying the origin of Cosmic Rays, spectral properties of pulsars, surveying ionized hydrogen in the Galaxy, and exploring coherent radio emissions.  相似文献   

3.
During the past two years (2016-2018), great achievements have been made in the Chinese research of interplanetary physics, with nearly 100 papers published in the academic journals. The achievements are including but not limited to the following topics:solar corona; solar wind and turbulence; filament/prominence and jets; solar flare; radio bursts; particle acceleration at coronal shocks; magnetic flux ropes; instability; instrument; Coronal Mass Ejections (CMEs) and their interplanetary counterparts; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles and cosmic rays. The progress further improves our understanding of the eruptions of solar activities, their evolutions and propagations in the heliosphere, and final geoeffects on our Earth. These results were achieved by the Chinese solar and space scientists independently or via international collaborations. This paper will give a brief review of these achievements.   相似文献   

4.
Processes in the solar corona are prodigious accelerators of energetic ions, and electrons. The angular distribution, composition, and spectra of energetic particles observed near Earth gives information on the acceleration mechanisms. A class of energetic particle observations particularly useful in understanding the solar acceleration is the near-relativistic impulsive beam-like electron events. During five years of operation the Advanced Composition Explorer (ACE) has measured well over 400 electron events. Approximately 25% of these electron events are impulsive beam-like events that are released onto interplanetary field lines predominantly from western solar longitudes. We extend our initial 3 year study during the rise to solar maximum (Haggerty and Roelof, 2002; Simnett et al., 2002) to a five year statistical analysis of these beam-like energetic electron events in relationship to optical flares, microwave emission, soft X-ray emission, metric and decametric type-III radio bursts, and coronal mass ejections.  相似文献   

5.
A concept for a new space-based cosmology mission called the Dark Ages Radio Explorer (DARE) is presented in this paper. DARE’s science objectives include: (1) When did the first stars form? (2) When did the first accreting black holes form? (3) When did Reionization begin? (4) What surprises does the end of the Dark Ages hold (e.g., Dark Matter decay)? DARE will use the highly-redshifted hyperfine 21-cm transition from neutral hydrogen to track the formation of the first luminous objects by their impact on the intergalactic medium during the end of the Dark Ages and during Cosmic Dawn (redshifts z = 11–35). It will measure the sky-averaged spin temperature of neutral hydrogen at the unexplored epoch 80–420 million years after the Big Bang, providing the first evidence of the earliest stars and galaxies to illuminate the cosmos and testing our models of galaxy formation. DARE’s approach is to measure the expected spectral features in the sky-averaged, redshifted 21-cm signal over a radio bandpass of 40–120 MHz. DARE orbits the Moon for a mission lifetime of 3 years and takes data above the lunar farside, the only location in the inner solar system proven to be free of human-generated radio frequency interference and any significant ionosphere. The science instrument is composed of a low frequency radiometer, including electrically-short, tapered, bi-conical dipole antennas, a receiver, and a digital spectrometer. The smooth frequency response of the antennas and the differential spectral calibration approach using a Markov Chain Monte Carlo technique will be applied to detect the weak cosmic 21-cm signal in the presence of the intense solar system and Galactic foreground emissions.  相似文献   

6.
CMEs (Coronal Mass Ejections) are an important means of energy release in the solar corona. Solar Polar Orbit Radio Telescope (SPORT) is a mission being proposed for observing the propagation of interplanetary CMEs from solar polar orbit. The main payload onboard SPORT is a synthetic aperture interferometric radiometer, which receives radio emission of interplanetary CMEs. It is identified that there are mainly three radio emission mechanisms of CMEs, i.e., bremsstrahlung, gyrosynchrotron emission and plasma emission. Among these emission types, bremsstrahlung emission is the main emission mechanism of the high-density plasma clouds of interplanetary CMEs. Gyrosynchrotron emission is the continuous emission generated by high-energy electrons from CMEs, while plasma emission is the main mechanism of transient radio bursts from CMEs. In this paper, the gyrosynchrotron emission of interplanetary CMEs is focused on. Firstly, the mechanism of gyrosynchrotron emission is reviewed. Secondly, a review of the physical parameter models of background solar wind and interplanetary CMEs is presented. After these, the brightness temperature and polarization of gyrosynchrotron emission of interplanetary CMEs are calculated and analyzed. Finally, the detectability of gyrosynchrotron emission of interplanetary CMEs by radio meters is discussed briefly.   相似文献   

7.
The solar physics studies in China during 2004-2006 from solar interior to solar atmospheres and solar-interplanetary space are summarized. These researches are arranged under the topics of solar interior, photosphere, chromosphere and transition region, corona, flares and CMEs (and the associated radio bursts, X-ray/γ-ray bursts and particle acceleration), solar wind, solar cycle, and ground-based instrumentation.  相似文献   

8.
A statistical study of acceleration and its error of coronal mass ejections (CMEs) observed by the Large Angle Spectrometric Coronagraph (LASCO) is performed. A total of 5594 CMEs events have been analyzed by using a least-square method and using the error in the height measures. We verify that slower CMEs (velocities in the interval from 200 to 500 km s−1) tend to have a positive acceleration (about 1 m s−2) at heights above 5 solar radii, while less than 10% CMEs show an average negative acceleration (about −2.2 m s−2) as they propagate from 5 to 30 solar radii. For most individual CMEs one can not say if they are accelerated or decelerated, only for 8% of all observed CMEs events one can extract the sign of the acceleration in the 5–30 solar radii.  相似文献   

9.
A current serious limitation on the studies of solar energetic particle (SEP) events is that their properties in the inner heliosphere are studied only through in situ spacecraft observations. Our understanding of spatial distributions and temporal variations of SEP events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with solar fields and particles. We suggest that the heliospheric SEPs may also interact with heliospheric particles and fields to produce signatures which can be remotely observed and imaged. A challenge with any such candidate signature is to separate it from that of flare SEPs. The optimum case for imaging high-energy (E > 100 MeV) heliospheric protons may be the emission of π0-decay γ-rays following proton collisions with solar wind (SW) ions. In the case of E > 1 MeV electrons, gyrosynchrotron radio emission may be the most readily detectible remote signal. In both cases we may already have observed one or two such events. Another radiative signature from nonthermal particles may be resonant transition radiation, which has likely already been observed from solar flare electrons. We discuss energetic neutrons as another possible remote signature, but we rule out γ-ray line and 0.511 MeV positron annihilation emission as observable signatures of heliospheric energetic ions. We are already acquiring global signatures of large inner-heliospheric SW density features and of heliosheath interactions between the SW and interstellar neutral ions. By finding an appropriate observable signature of remote heliospheric SEPs, we could supplement the in situ observations with global maps of energetic SEP events to provide a comprehensive view of SEP events.  相似文献   

10.
Approved in October 2000 by ESA's Science Programme Committee as a flexi-mission, the Solar Orbiter will studythe Sun and unexplored regions of the inner heliosphere from a unique orbit that brings the probe to within 45 solar radii (0.21 AU) of our star, and to solar latitudes as high as 38°. This orbit will allow the Solar Orbiter to make fundamental contributions to our understanding of the acceleration and propagation of energetic particles in the extended solar atmosphere. During quasi-heliosynchronous phases of the orbit, Solar Orbiter will track a given region of the solar surface for several days, making possible unprecedented studies of the sources of impulsive and CME-related particle events. The scientific payload to be carried by the probe will include a sophisticated remote-sensing package, as well as state-of-the-art in-situ instruments. The multi-wavelength, multi-disciplinary approach of Solar Orbiter, combined with its novel location, represents a powerful tool for studies of energetic particle phenomena.  相似文献   

11.
Imaging interplanetary CMEs at radio frequency from solar polar orbit   总被引:1,自引:0,他引:1  
Coronal mass ejections (CMEs) represent a great concentration of mass and energy input into the lower corona. They have come to be recognized as the major driver of physical conditions change in the Sun–Earth system. Consequently, observations of CMEs are important for understanding and ultimately predicting space weather conditions. This paper discusses a proposed mission, the Solar Polar Orbit Radio Telescope (SPORT) mission, which will observe the propagation of interplanetary CMEs to distances of near 0.35 AU from the Sun. The orbit of SPORT is an elliptical solar polar orbit. The inclination angle between the orbit and ecliptic plane should be about 90°. The main payload on board SPORT will be an imaging radiometer working at the meter wavelength band (radio telescope), which can follow the propagation of interplanetary CMEs. The images that are obtained by the radio telescope embody the brightness temperature of the objectives. Due to the very large size required for the antenna aperture of the radio telescope, we adopt interferometric imaging technology to reduce it. Interferometric imaging technology is based on indirect spatial frequency domain measurements plus Fourier transformation. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind ion instrument, an energetic particle detector, a magnetometer, a wave detector and a solar radio burst spectrometer.  相似文献   

12.
1.1972年以来,随着Pioneer 10、11,Helios 1、2和Voyager 1、2等飞船组先后上天,进入“深空”探测,太阳风等离子体和行星际磁场的实地测量的日心径范围已从以前的1AU附近扩展到0.3—30AU,太阳纬度范围也从以前的-7.5°— +7.5°扩大到-7.5— +16°.   相似文献   

13.
We report the statistical properties of narrow coronal mass ejections (CMEs, angular width < 20°) withparticular emphasis on comparison with normal CMEs. We investigated 806 narrow CMEs from an online LASCO/CME catalog and found that (1) the fraction of narrow CMEs increases from 12% to 22% towards solar maximum, (2) during the solar maximum, the narrow CMEs are generally faster than normal ones, (3) the maximum speed of narrow CMEs (1141 km s−1) is much smaller than that of the normal CMEs (2604 km s−1). These results imply that narrow CMEs do not form a subset of normal CMEs and have a different acceleration mechanism from normal CMEs.  相似文献   

14.
Solar radio bursts (SRBs) are the signatures of various phenomenon that happen in the solar corona and interplanetary medium (IPM). In this article, we have studied occurrence of Type III bursts and their association with the Sunspot number. This study confirms that occurrence of Type III bursts correlate well with Sunspot number. Further, using the data obtained using e-CALLISTO network, we have investigated drift rates of isolated Type III bursts and duration of the group of Type III bursts. Since Type II, Type III and Type IV bursts are signatures of solar flares and/or CMEs, we can use the radio observations to predict space weather hazards. In this article, we have discussed two events that have caused near Earth radio blackouts. Since e-CALLISTO comprises more than 152 stations at different longitudes, we can use it to monitor the radio emissions from the solar corona 24 h a day. Such observations play a crucial role in monitoring and predicting space weather hazards within few minutes to hours of time.  相似文献   

15.
Magnetic reconnection occurs during eruptive processes (flares, CMEs) in the solar corona. This leads to a change of magnetic connectivity. Nonthermal electrons propagate along the coronal magnetic field thereby exciting dm- and m-wave radio burst emission after acceleration during reconnection or other energy release processes in heights of some Mm to ⩾700 Mm. We summarize the results of some case studies which can be interpreted as radio evidence of magnetic reconnection: under certain conditions, simple spectral structures (pulsation pulses, reverse drift bursts) are formed by simultaneously acting but widely spaced radio sources. Narrowband spikes are emitted as a side-effect during large-scale coronal loop collisions. In dynamic radio spectra, the lower fast mode shock formed in the reconnection outflow appears as type II burst-like but nondrifting emission lane. It has been several times observed at the harmonic mode of the local plasma frequency between 250 and 500 MHz and at heights of ≈200 Mm.  相似文献   

16.
We have modeled “gradual” solar energetic particle events through numerical simulations using a StochasticDifferential Equation (SDE) method. We consider that energetic particle events are roughly divided into two groups: (1) where the shock was driven by coronal mass ejections (CMEs) associated with large solar flares, and (2) where they have no related solar events apart from the CMEs. (The detailed classification of energetic particle events was discussed in our previous paper.) What we call “gradual” solar energetic particle events belong to the former group. Particles with energies greater than 10 MeV are observed within several hours after the occurrence of flares and CMEs in many gradual events. By applying the SDE method coupled with particle splitting to diffusive acceleration, we found that an injection of high energy particles is necessary for early enhancement of such a high-energy proton flux and that it should not be presumed that the solar wind particles act as the seed population.  相似文献   

17.
低频射电探测任务构想——鸿蒙计划旨在利用多颗卫星绕月编队形成超长波天文观测阵列,在月球背面开展空间低频射电天文探测。其科学目标是高精度测量全天射电频谱,揭示宇宙黑暗时代与黎明的演化历史;实现首次高分辨率超长波巡天,打开最后一个电磁窗口;观测太阳和行星超长波活动,揭示空间环境相互作用规律。该任务将获得超长波频段全天空图像,获取超长波波段天文射电源的强度、频谱、分布等信息。这些科学数据对于探索宇宙黑暗时代和黎明时代、研究银河系星际介质、宇宙线起源与传播、河外射电星系、类星体和星系团的演化、太阳活动与行星磁场等,具有重要的科学价值。  相似文献   

18.
After the solar wind termination shock crossings of the Voyager spacecraft, the acceleration of anomalous cosmic rays has become a very contentious subject. In this paper we examine several topics pertinent to anomalous cosmic ray oxygen acceleration and transport using a numerical cosmic ray modulation model. These include the effects of drifts on a purely Fermi I accelerated spectra, the effects of introducing higher charge states of oxygen into the modulation model, examining the viability of momentum diffusion as a re-acceleration process in the heliosheath and examining energy spectra, and intensity gradients, in the inner heliosphere during consecutive drift cycles.  相似文献   

19.
In this work we make an analysis of significant periodicities shown by phenomena linked to solar activity such as coronal hole area, radio emission in the 10.7 cm band and sunspots. We use the wavelet method that gives information in the frequency and time domains. Of particular interest are the mid-term periodicities (1–2 yrs). Over the whole period, coronal holes and radio variations show an important annual variation and a quasi-biannual periodicity. The increase in these variations is most important around the years of maximum solar activity. When the time series are separated in low and high frequencies, the latter are modulated by the general solar cycle. Although somewhat shifted in frequency, these periodicities might well correspond with those found in cosmic ray intensity, solar magnetic flux and other terrestrial and interplanetary phenomena as a wavelet coherence analysis of these series with the solar magnetic flux reveals.  相似文献   

20.
Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360° perspective in the ecliptic plane. It will deploy-three 120°-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30° upstream of the Earth, the second, S2, 90° downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere — the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号