首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a comprehensive approach to associate origins of space objects newly discovered during optical surveys in the geostationary region with spacecraft breakup events. A recent study has shown that twelve breakup events would be occurred in the geostationary region. The proposed approach utilizes orbital debris modeling techniques to effectively conduct prediction, detection, and classification of breakup fragments. Two techniques are applied to get probable results for origin identifications. First, we select an observation point where a high detection rate for one breakup event among others can be expected. Second, we associate detected tracklets, which denotes the signals associated with a physical object, with the prediction results according to their angular velocities. The second technique investigates which breakup event a tracklet would belong to, and its probability by using the k-nearest neighbor (k-NN) algorithm.  相似文献   

2.
For space surveillance Europe is currently strongly depending on external sources. Although some European radar and optical facilities for space object tracking exist, there is no operational European space surveillance system. An ESA-funded feasibility study for a future independent European space surveillance capability was performed recently. Some of the main conclusions are presented here. We discuss the surveillance of the geostationary ring (GEO) by evaluating existing and newly designed optical ground-based sensors in terms of their performance. The main performance-related issues – the coverage of the GEO ring and the minimum detectable objects size – are discussed. In order to perform detailed simulations, an observation strategy was defined and algorithms for the correlation of objects with a catalogue and for the maintenance of that catalogue were developed. We used the ESA PROOF software to estimate the sensor performance and AIUB tools to simulate the catalogue correlation. The performance was validated using data from campaigns performed with the ESA Space Debris Telescope at Tenerife, Spain.  相似文献   

3.
Since 1963 approximately 300 satellites have been launched into the geostationary orbit, followed possibly by another additional 200 satellites up to the year 2000. Ground surveillance with radar and optical sensors able to detect objects of 1 m minimum size in the geostationary ring indicates a total population of several hundred which includes active and defunct satellites and spent upper stages. In addition, a population of untrackable objects is conjectured, whose size can only be estimated, possibly several thousand of smaller objects.

The purpose of this paper is to review the long-term evolution of orbits in the geostationary ring and at higher altitude, the collision probabilities and disposition options.

The major perturbations are considered including attitude-orbit cross-coupling effects which could cause secular orbit perturbations.

Collision probabilities for current and projected populations are reviewed considering different approaches, such as a deterministic treatment of the uncontrolled population and a stochastic modeling for the controlled satellites. Also, colocation, that is sharing of the same longitude slot by several operational satellites, is a potential source for collision, if no preventive measures are taken.

As regards spacecraft disposition options, the conclusion is that reorbiting is currently the only practical measure to safeguard the geostationary orbit. In this recommended procedure the defunct satellites are inserted into a so-called graveyard orbit, located suffieciently high above the geostationary orbit.  相似文献   


4.
In the framework of its space debris research activities ESA established an optical survey program to study the space debris environment at high altitudes, in particular in the geostationary ring and in the geostationary transfer orbit region. The Astronomical Institute of the University of Bern (AIUB) performs these surveys on behalf of ESA using ESA’s 1-m telescope in Tenerife. Regular observations were started in 1999 and are continued during about 120–140 nights per year. Results from these surveys revealed a substantial amount of space debris at high altitudes in the size range from 0.1 to 1 m. Several space debris populations with different dynamical properties were identified in the geostationary ring. During the searches for debris in the geostationary transfer orbit region a new population of objects in unexpected orbits, where no potential progenitors exist, was found. The orbital periods of these objects are clustered around one revolution per day; the eccentricities, however, are scattered between 0 and 0.6. By following-up some of these objects using the ESA telescope and AIUB’s 1-m telescope in Zimmerwald, Switzerland, it was possible to study the properties of this new population. One spectacular finding from monitoring the orbits over time spans of days to months is the fact that these objects must have extreme area-to-mass ratios, which are by several orders of magnitudes higher than for ‘normal-type’ debris. This in turn supports the hypothesis that the new population actually is debris generated in or near the geostationary ring and which is in orbits with periodically varying eccentricity and inclination due to perturbations by solar radiation pressure. In order to further study the nature of these debris, multi-color and temporal photometry (light curves) were acquired with the Zimmerwald telescope. The light curves show strong variations over short time intervals, including signals typical for specular reflections. Some objects exhibit distinct periodic variations with periods ranging from 10 to several 100 s. All this is indicative for objects with complicated shapes and some highly reflective surfaces.  相似文献   

5.
Under ESA contract an industrial consortium including Aboa Space Research Oy (ASRO), the Astronomical Institute of the University of Bern (AIUB), and the Dutch National Aerospace Laboratory (NLR), proposed the observation concept, developed a suitable sensor architecture, and assessed the performance of a space-based optical (SBO) telescope in 2005. The goal of the SBO study was to analyse how the existing knowledge gap in the space debris population in the millimetre and centimetre regime may be closed by means of a passive optical instrument. The SBO instrument was requested to provide statistical information on the space debris population in terms of number of objects and size distribution. The SBO instrument was considered to be a cost-efficient with 20 cm aperture and 6° field-of-view and having flexible integration requirements. It should be possible to integrate the SBO instrument easily as a secondary payload on satellites launched into low-Earth orbits (LEO), or into geostationary orbit (GEO). Thus the selected mission concept only allowed for fix-mounted telescopes, and the pointing direction could be requested freely. Since 2007 ESA focuses space surveillance and tracking activities in the Space Situational Awareness (SSA) preparatory program. Ground-based radars and optical telescopes are studied for the build-up and maintenance of a catalogue of objects. In this paper we analyse how the proposed SBO architecture could contribute to the space surveillance tasks survey and tracking. We assume that the SBO instrumentation is placed into a circular sun-synchronous orbit at 800 km altitude. We discuss the observation conditions of objects at higher altitude, and select an orbit close to the terminator plane. A pointing of the sensor orthogonal to the orbital plane with optimal elevation slightly in positive direction (0° and +5°) is found optimal for accessing the entire GEO regime within one day, implying a very good coverage of controlled objects in GEO, too. Simulations using ESA’s Program for Radar and Optical Observation Forecasting (PROOF) in the version 2005 and a GEO reference population extracted from DISCOS revealed that the proposed pointing scenario provides low phase angles together with low angular velocities of the objects crossing the field-of-view. Radiometric simulations show that the optimal exposure time is 1–2 s, and that spherical objects in GEO with a diameter of below 1 m can be detected. The GEO population can be covered under proper illumination nearly completely, but seasonal drops of the coverage are possible. Subsequent observations of objects are on average at least every 1.5 days, not exceeding 3 days at maximum. A single observation arc spans 3° to 5° on average. Using a simulation environment that connects PROOF to AIUB’s program system CelMech we verify the consistency of the initial orbit determination for five selected test objects on subsequent days as a function of realistic astrometric noise levels. The initial orbit determination is possible. We define requirements for a correlator process essential for catalogue build-up and maintenance. Each single observation should provide an astrometric accuracy of at least 1”–1.5” so that the initially determined orbits are consistent within a few hundred kilometres for the semi-major axis, 0.01 for the eccentricity, and 0.1° for the inclination.  相似文献   

6.
A spacecraft with a passive thermal control system utilizes various thermal control materials to maintain temperatures within safe operating limits. Materials used for spacecraft applications are exposed to harsh space environments such as ultraviolet (UV) and particle (electron, proton) irradiation and atomic oxygen (AO), undergo physical damage and thermal degradation, which must be considered for spacecraft thermal design optimization and cost effectiveness. This paper describes the effect of synergistic radiation on some of the important thermal control materials to verify the assumptions of beginning-of-life (BOL) and end-of-life (EOL) properties. Studies on the degradation in the optical properties (solar absorptance and infrared emittance) of some important thermal control materials exposed to simulated radiative geostationary space environment are discussed. The current studies are purely related to the influence of radiation on the degradation of the materials; other environmental aspects (e.g., thermal cycling) are not discussed. The thermal control materials investigated herein include different kind of second-surface mirrors, white anodizing, white paints, black paints, multilayer insulation materials, varnish coated aluminized polyimide, germanium coated polyimide, polyether ether ketone (PEEK) and poly tetra fluoro ethylene (PTFE). For this purpose, a test in the constant vacuum was performed reproducing a three year radiative space environment exposure, including ultraviolet and charged particle effects on North/South panels of a geostationary three-axis stabilized spacecraft. Reflectance spectra were measured in situ in the solar range (250–2500 nm) and the corresponding solar absorptance values were calculated. The test methodology and the degradations of the materials are discussed. The most important degradations among the low solar absorptance materials were found in the white paints whereas the rigid optical solar reflectors remained quite stable. Among the high solar absorptance elements, as such the change in the solar absorptance was very low, in particular the germanium coated polyimide was found highly stable.  相似文献   

7.
<正> 一、前言国际电信联盟无线电规则把气象卫星业务定义为用于气象目的的地球探测卫星业务。但对静止气象卫星业务来说,气象业务部门希望它不仅要具有气象观测功能,而且要具有收集、传送和分发各种气象信息的功能。因此,静止气象卫星不仅是位于静止轨道上的空间气象观测平台,而且也是收集,传送和分发气象数据的中继站,其有效载荷主要是观测地球大气的各种遥感仪器及收集、传送和分发气象数据的通信系统。它兼有地球探测卫星和通信卫星的  相似文献   

8.
The two TAROT (Télescopes à Action Rapide pour les Objets Transitoires; Rapid Action Telescopes for Transient Objects) installations are fully robotic optical observatories with optimized observation scheduling, data processing and archiving. Zadko is a 1 m telescope in Western Australia. The fully robotisation of the Zadko telescope has just been completed; it is now included in the TAROT network. In this paper we provide an overview of this international network of robotic optical telescopes. We discuss the advantages of using the network to participate in a satellite and space debris tracking program. This network will access almost all geostationary belt objects, and provide the first real-time satellite positioning capability. The inclusion of the 1 m Zadko telescope into the network significantly extends the efficiency and sensitivity of the existing two telescope configuration.  相似文献   

9.
A local orbital debris flux analysis is performed in the geostationary (GEO) ring to investigate how frequently near-miss events occur for each longitude slot in the GEO ring. The current resident space object (RSO) environment at GEO is evaluated, and publicly-available two-line element (TLE) data are utilized in tandem with a geostationary torus configuration to simulate near-miss events incurred by the trackable RSO population at GEO. Methodology for determining near-miss events with this formulation is introduced, and the results of the analysis for a one-year time frame are provided to illustrate the need for active GEO remediation.  相似文献   

10.
For more than 25 years, the practice of reorbiting of a geostationary satellite at the end of its mission in order to protect the geostationary orbit (GEO) environment has been recommended and performed by a number of operators. In recent years, an internationally recognised re-orbiting altitude has been defined by the Inter-Agency Space Debris Coordination Committee (IADC). Based on orbital data contained in the DISCOS database, the situation on the geostationary ring is analysed. In January 2004, from 1036 catalogued objects passing through the geostationary region, 340 are controlled within their allocated longitude slots, 395 are drifting above, below or through GEO, and 140 are in a libration orbit. In the periods 1997–2003, 103 spacecraft reached their end of life; 34 were reorbited in compliance with the IADC recommendation, 35 were reorbited below the minimum recommended altitude, and 34 were abandoned without any end-of-life disposal manoeuvre. Apart from these catalogued objects, the ESA 1-m telescope has observed many smaller debris (down to 10–15 cm) in this orbital region representing a collision risk for GEO spacecraft which is difficult to quantify.  相似文献   

11.
北斗卫星导航系统(BDS)中GEO卫星频繁的轨道机动对高精度、实时不间断的导 航服务需求提出了更高要求, 如何在短弧跟踪条件下提高GEO卫星轨道快速 恢复能力, 是提升导航系统服务精度的关键因素. 针对该问题, 本文提出了基 于机动力模型的动力学定轨方法, 尝试利用高精度的C波段转发式测距数据, 辅 以机动期间的遥测遥控信息建立机动力模型, 联合轨控前后的观测数据进行动 力学长弧定轨. 利用BDS中GEO卫星实测数据进行了定轨试验与分析, 结果表明, 恢复期间需要采用解算机动推力的定轨方法, 联合机动前、机动期间和机 动后4h数据定轨的轨道位置精度在20m量级, 径向精度优于2.5m. 该方 法克服了短弧跟踪条件下动力学法定轨和单点定位中的诸多问题, 提供了解决 GEO卫星机动后轨道快速恢复问题的技术方法.   相似文献   

12.
电推进系统在静止轨道卫星平台上应用的关键技术   总被引:2,自引:0,他引:2  
在未来静止轨道平台上应用电推进系统是我国航天事业发展的必然趋势。将氙离子电推进系统(XIPS)应用于静止轨道卫星平台,除了要解决电推力器本身的问题之外,还要在系统应用方面做大量工作。以该静止轨道卫星对电推进系统的需求为基础,从三个方面对电推进系统在未来静止轨道平台上应用所涉及到的关键技术进行了分类及梳理:一是电推进系统与电推力器之间的关系,包括电推力器与推进剂贮存和供给子系统、电源子系统、控制子系统联合工作所涉及到的关键技术;二是电推进系统与化学推进系统的协调工作,包括两种推进系统的任务分工及相互影响所涉及到的关键技术;三是电推进系统对整星及大系统的影响,包括电推进系统对电源、热控、羽流污染控制、电磁兼容性(EMC)、遥测遥控、自主管理等所涉及到的关键技术。通过对这三个方面的关键技术进行梳理,明确了电推进系统在整星上应用所需要开展的工作。  相似文献   

13.
The Astronomical Institute of the University of Bern was and is conducting several search campaigns for space debris in the geostationary ring (GEO) and the geostationary transfer orbit (GTO). First tests to build up a catalogue of satellites and space debris were performed recently. As the discovery observations of an object usually cover a time interval of a few minutes only, the first orbits determined are assumed to be circular. For GEO objects a circular orbit is a rather good approximation. This is certainly not the case for GTO objects. Nevertheless, a circular orbit seems to be an acceptable approximation for a short time interval around the observations. The first orbits can be used to acquire follow-up observations, which allow the determination of elliptical orbits. The maximum allowed time span between the detection and the follow-up for a successful recovery is found using simulated GTO orbits and observations. Further follow-up observations are simulated in order to study the orbit improvement process and the required force model. The accuracy of orbits needed to build up a catalogue is studied. The simulations are compared to the results achieved with observations acquired by the 1 m telescope on Tenerife.  相似文献   

14.
The integration of geosynchronous orbit (GSO) satellites in Global Navigation Satellite Systems (GNSS) is mostly discussed to enable a regional enhancement for tracking. But how do GSO satellites affect the orbit determination of the rest of the constellation? How accurately can these orbits be determined in a future GNSS tracking scenario with optical links? In this simulation study we analyze the benefit of GSO satellites as an expansion of a MEO (Medium Earth Orbit) satellite constellation – we selected the Galileo satellite constellation – for MEO Precise Orbit Determination (POD). We address not only the impact on POD of MEO satellites but also the possibility to precisely determine the GSO satellites – geostationary orbits (GEO) and inclined geosynchronous orbits (IGSO) – in such an expanded MEO constellation. In addition to GNSS microwave observations, we analyze the influence of different optical links between the participating entities: Optical two-way Inter-Satellite Links (OISL) and ground-space oriented Optical Two-Way Links (OTWL). These optical measurements together with the GNSS microwave observations give a remarkable benefit for the POD capability. In the case of GNSS and OTWL, we simulate the measurements with regard to a network of 16 ground stations. We pay great attention to the simulation of systematic effects of all measurement techniques. We discuss the influence on the systematic errors as well as the formal orbit uncertainties. A MEO constellation expanded with GSO satellites as well as the use of optical links together with GNSS observations not only improves the MEO satellite orbits but also the GSOs to a great extent.  相似文献   

15.
针对中国地球静止轨道双星共位的需要, 研究了双星共位的工程实现问题, 提出了一种使用偏心率矢量和倾角矢量联合隔离实现双星共位的方法. 给出了基于偏心率矢量和倾角矢量联合隔离的基本方法、约束方程和工程实现的控制策略, 并通过模拟计算和工程实际应用情况, 验证了该方法的正确性.   相似文献   

16.
Measurements of the radiation environment aboard U.S. and Soviet manned spacecraft are reviewed and summarized. Data obtained mostly from passive and some active radiation detectors now exist for the case of low Earth-orbit missions. Major uncertainties still exist for space exposure in high altitude, high inclination, geostationary orbits, in connection with solar effects and that of shielding. Data from active detectors flown in Spacelabs 1 and 2 suggest that a variety of phenomena must be understood before the effects of long-term exposure at the space-station type of orbit and shielding can be properly assessed.  相似文献   

17.
This paper provides a Hamiltonian formulation of the averaged equations of motion with respect to short periods (1 day) of a space debris subjected to direct solar radiation pressure and orbiting near the geostationary ring. This theory is based on a semi-analytical theory of order 1 regarding the averaging process, formulated using canonical and non-singular elements for eccentricity and inclination. The analysis is based on an expansion in powers of the eccentricity and of the inclination, truncated at an arbitrary high order.  相似文献   

18.
同步角的计算是从静止气象卫星获得高精度图象的首要问题之一。同步角的精度不仅与卫星的轨道、姿态的确定精度有关,还和卫星的动力学稳定性以及观测时间有关。  相似文献   

19.
本文对地球静止卫星在轨东西向保持做了定性和定量的描述;对反映东西保持漂移环的几个重要参数做了理论和实测结果分析。分析结果表明:用实测星下点统计计算得到的卫星东西漂移加速度和卫星同步半径与理论计算有较好的一致性。  相似文献   

20.
Identifying spacecraft breakup events is an essential issue for better understanding of the current orbital debris environment. This paper proposes an observation planning approach to identify an orbital anomaly, which appears as a significant discontinuity in archived orbital history, as a spacecraft breakup. The proposed approach is applicable to orbital anomalies in the geostationary region. The proposed approach selects a spacecraft that experienced an orbital anomaly, and then predicts trajectories of possible fragments of the spacecraft at an observation epoch. This paper theoretically demonstrates that observation planning for the possible fragments can be conducted. To do this, long-term behaviors of the possible fragments are evaluated. It is concluded that intersections of their trajectories will converge into several corresponding regions in the celestial sphere even if the breakup epoch is not specified and it has uncertainty of the order of several weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号