首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
Some of the considerations in the design of the telescope for FIRST are discussed. It is pointed out that instruments that operate at submillimetre wavelengths need to be analyzed with techniques derived from both the Radio and Optical/IR traditions. The issue of emissivity of reflector surfaces is also discussed.  相似文献   

2.
A suite of three optical instruments has been developed to observe Comet 9P/Tempel 1, the impact of a dedicated impactor spacecraft, and the resulting crater formation for the Deep Impact mission. The high-resolution instrument (HRI) consists of an f/35 telescope with 10.5 m focal length, and a combined filtered CCD camera and IR spectrometer. The medium-resolution instrument (MRI) consists of an f/17.5 telescope with a 2.1 m focal length feeding a filtered CCD camera. The HRI and MRI are mounted on an instrument platform on the flyby spacecraft, along with the spacecraft star trackers and inertial reference unit. The third instrument is a simple unfiltered CCD camera with the same telescope as MRI, mounted within the impactor spacecraft. All three instruments use a Fairchild split-frame-transfer CCD with 1,024× 1,024 active pixels. The IR spectrometer is a two-prism (CaF2 and ZnSe) imaging spectrometer imaged on a Rockwell HAWAII-1R HgCdTe MWIR array. The CCDs and IR FPA are read out and digitized to 14 bits by a set of dedicated instrument electronics, one set per instrument. Each electronics box is controlled by a radiation-hard TSC695F microprocessor. Software running on the microprocessor executes imaging commands from a sequence engine on the spacecraft. Commands and telemetry are transmitted via a MIL-STD-1553 interface, while image data are transmitted to the spacecraft via a low-voltage differential signaling (LVDS) interface standard. The instruments are used as the science instruments and are used for the optical navigation of both spacecraft. This paper presents an overview of the instrument suite designs, functionality, calibration and operational considerations.  相似文献   

3.
This paper introduces the program of an adaptive optics system using an infrared camera for the near infrared observations based on the 2.16 m telescope of Beijing Observatory. This system consists of 3 parts: (1), the 2.16 m telescope; (2), the adaptive optics system that will be mounted at the coudé focus on an optical table. It will be used to remove the effect of atmospheric turbulence on the imaging observations; (3), the infrared camera with a 512×512 PtSi IR detector array.  相似文献   

4.
This paper first outlines the assumed mission requirements for a radiatively cooled space telescope such as EDISON. A summary of relevant characteristics (payload, operating orbit, launcher, lifetime, etc.) for current and proposed cooled telescope missions is then given. This summary includes cryogenic and radiatively cooled missions since in both cases the reduction of heat input to the telescope aperture is a dominant factor in the orbit choice. These missions span the entire range of possibilities from low earth circular, through higher elliptical and circular orbits out to deep space locations such as the Sun-Earth (S-E) libration points and the lunar surface.A full listing of the factors affecting mission selection is then given. The most important points are illustrated by reference to the orbits chosen for ISO, FIRST and SIRTF and those recommended in recent studies of EDISON. Launcher capabilities for direct insertion and the onboard propellant for large velocity changes associated with orbit raising are major constraints in achieving the large payload mass to high orbit which EDISON mission requires. Although it is fairly demanding in launch/boost energy, an orbit about the L2 S-E libration point offers important advantages for a radiatively cooled infrared telescope. Further studies of this orbit and the associated aspects of service module and payload design for the L2 location of EDISON are recommended.  相似文献   

5.
Detecting small moving objects using temporal hypothesis testing   总被引:3,自引:0,他引:3  
This paper addresses the problem of detecting small, moving, low amplitude objects in image sequences that also contain moving nuisance objects and background noise. We formulate this problem in the context of a hypothesis testing procedure on individual pixel temporal profiles, leading to a computationally efficient statistical test. The technique assumes we have reasonable deterministic and statistical models for the temporal behavior of the background noise, target, and clutter, on a single pixel basis. Based on these models we develop a generalized likelihood ratio test (GLRT) and perfect measurement performance analysis, and present the resulting decision rule. We also propose a parameter estimation technique and compare its performance to the Cramer Rao bound (CRB). We demonstrate the effectiveness of the technique by applying the resulting algorithm to real world infrared (IR) image sequences containing targets of opportunity. The approach could also be applicable to other image sequence processing scenarios, using acquisition systems besides IR imaging, such as detection of small moving objects or structures in a biomedical or biological imaging scenario, or the detection of satellites, meteors or other celestial bodies in night sky imagery acquired using a telescope  相似文献   

6.
The Infrared Space Observatory (ISO), a programme of the European Space Agency, is an astronomical satellite operating at wavelength from 2.5 to 200 m. It will be launched in 1995.The ISO optical subsystem is a cryogenically cooled telescope with its baffling system (main baffle and sunshade). The telescope, a 60 cm Ritchey-Chrétien type, focuses the beam to the four scientific instruments located in its focal plane. The extremely low temperature, 1.8 K, is provided by the payload module (PLM) cryostat, filled with superfluid He.This paper presents the main choices done for the telescope design together with their rationale and the performances achieved on the flight model (FM) of the telescope. The FM telescope is presently installed inside the payload module, ready for the system final verifications.  相似文献   

7.
The Thermal Emission Imaging System (THEMIS) on 2001 Mars Odyssey will investigate the surface mineralogy and physical properties of Mars using multi-spectral thermal-infrared images in nine wavelengths centered from 6.8 to 14.9 μm, and visible/near-infrared images in five bands centered from 0.42 to 0.86 μm. THEMIS will map the entire planet in both day and night multi-spectral infrared images at 100-m per pixel resolution, 60% of the planet in one-band visible images at 18-m per pixel, and several percent of the planet in 5-band visible color. Most geologic materials, including carbonates, silicates, sulfates, phosphates, and hydroxides have strong fundamental vibrational absorption bands in the thermal-infrared spectral region that provide diagnostic information on mineral composition. The ability to identify a wide range of minerals allows key aqueous minerals, such as carbonates and hydrothermal silica, to be placed into their proper geologic context. The specific objectives of this investigation are to: (1) determine the mineralogy and petrology of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; and (4) investigate polar cap processes at all seasons. THEMIS follows the Mars Global Surveyor Thermal Emission Spectrometer (TES) and Mars Orbiter Camera (MOC) experiments, providing substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MOC cameras. The THEMIS uses an uncooled microbolometer detector array for the IR focal plane. The optics consists of all-reflective, three-mirror anastigmat telescope with a 12-cm effective aperture and a speed of f/1.6. The IR and visible cameras share the optics and housing, but have independent power and data interfaces to the spacecraft. The IR focal plane has 320 cross-track pixels and 240 down-track pixels covered by 10 ~1-μm-bandwidth strip filters in nine different wavelengths. The visible camera has a 1024×1024 pixel array with 5 filters. The instrument weighs 11.2 kg, is 29 cm by 37 cm by 55 cm in size, and consumes an orbital average power of 14 W.  相似文献   

8.
General principles are outlined for the design of space infrared telescopes intended to cool by radiation to the lowest temperatures attainable without the use of on-board cryogens, and assuming on-orbit cooling after a warm launch. Maximum protection from solar and earth heating, maximum radiating area and efficiency and minimum absorbing area and absorptivity are the obvious basic criteria. The optimised design is a short, fat telescope surrounded by a series of radiation shields, each cooled by its own radiator. Maximising the longitudinal conductivity of the radiation shields and of the telescope tube itself is important both to the on-orbit cooling time and the final achieveable temperature. Realistic designs take between 80 and 200 days to cool to within a few degrees of equilibrium temperatures, depending on the materials used. Great advantages accrue from the use of an orbit distant from earth. Both simple models and detailed simulations suggest that temperatures of 30 to 40 K are attainable in high earth orbits. Placing a radiatively cooled telescope in a halo orbit around the Lagrangian point L2 is a particularly attractive option and significantly lower temperatures can be achieved there than in Earth orbit. Optimised radiative cooling is an important element of the small Japanese mission SMIRT. We suggest that a combination of an ESA Medium-sized Mission with a NASA Explorer to send a 2m+ telescope to an L2 halo orbit would provide a cost-effective and powerful long-duration facility for the early 21st century.  相似文献   

9.
Computer simulation results are presented for the planar equations of motion of an attitude-stabilized orbiting telescope passively coupled to a manned service module. This coupling is provided through a set of soft springs and a two-axis gimbal aligned with the telescope center of mass. Principal nonlinearities in the suspension system and the telescope control system are included. The simulation indicates preliminary nary feasibility of this operational mode.  相似文献   

10.
激光测距作为空间目标测定轨精度最高的技术,对非合作目标的测量精度比微波雷达、光电探测等技术高1~2个数量级,非常有利于非合作目标的精密定位、轨道复核及精确编目,保障在轨空间飞行器的安全。激光在非合作目标表面会发生漫反射,返回光斑弥散、回波微弱,采用大口径望远镜接收系统是必要的。鉴于大口径望远镜研制难度大,提出基于单站发射多站接收的空间目标激光测距新方法,即采用多接收望远镜增加接收面积,实现目标测量能力提升。通过分析单站发射多站接收的激光测距技术特点,基于双望远镜系统开展空间合作目标测量实验,验证了多望远镜接收激光信号的可行性,为该测距技术发展奠定了实验基础。  相似文献   

11.
The Hubble space-based telescope is a great tribute to our progress in space. The ability to place an optical telescope at a significant distance from the Earth's surface, away from the interference of the planet's unsteady atmosphere, have already paid off by producing magnificent records of astronomical activities in the depths of outer space. In the past the problems with the alignment of the Hubble's optics were blamed on the manufacturers of it's optical components. The hastily set investigation concluded that the problem is a spherical aberration of the primary mirror (the primary mirror is said to be 2 microns too flat at the edges). It is suggested that the real culprit is the Parker Effect. Since the time of Galileo Galilei, all telescopes were built, aligned, and used on the Earth's surface. Hubble is the first telescope to be built and aligned on Earth for use in space. Because of this we have to consider the fundamental differences between the alignment of surface-based and space-based telescopes. For those who missed our article “The Parker Effect and Navigation in Space” published in the January issue. The Parker Effect describes the result of interaction between inertial bodies (anything that has mass) and non-inertial media (light or other E/M fields)  相似文献   

12.
The James Webb Space Telescope   总被引:4,自引:0,他引:4  
The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m.The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations.To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.  相似文献   

13.
《Space Science Reviews》1989,49(1-2):111-124
The telescope Gamma-1 is designed to investigate cosmic gamma rays in the energy range from 50 MeV to 5000 MeV. The geometrical sensitive area of the telescope amounts to 1500 cm2, the angular resolution in each direction is equal to 1.2° at the energy 300 MeV and is about 20 when including a coded mask in the telescope, the energy resolution changes from 70% at 100 MeV to 35% at 550 MeV. The characteristics of the telescope and its systems have been determined by the Monte-Carlo method as well as by accelerator calibrations. Discrete sources at the intensity level of 10–7 quanta cm–2 s–1 may be recorded in a year of observations with the gamma-ray telescope Gamma-1 with a source location accuracy of 10 arc min.  相似文献   

14.
The visible extragalactic background (though as yet undetected) is insufficient to explain the abundance of heavy elements in galaxies: either there should be some diffuse extragalactic light in the near infrared (from 1 to 10 m) and/or in the far infrared (100 m) if dust has reprocessed the star light. We propose a new space mission to be dedicated to the search and mapping of primordial stellar light from the visible to the mid-infrared (20 m). In this spectrum range, detectors have reached such a sensitivity that the mission should aim at being (source) photon noise limited, and not any longer background photon noise limited. For that purpose, a small passively cooled telescope with large format CCDs and CIDs could be sent beyond the zodiacal dust cloud (which is absent beyond a solar distance of about 3 AU). In that case, the only remaining foregrounds before reaching the extragalactic background, is due to the Milky Way integrated emission from stars and the diffuse galactic light due to scattering and emission by interstellar dust, which are all unavoidable. Maps of the extragalactic light could be obtained at the arcminute resolution with high signal to noise ratio. This mission is the next logical step after IRAS, COBE and ISO for the study of extragalactic IR backgrounds. It has been proposed as a possible medium-sized mission for the post-horizon 2000 ESA program that could be a piggy back of a planetary mission.  相似文献   

15.
We highlight the effect on space-telescope temperatures of thedirectionality of the radiative properties of materials, by showing results from a Monte-Carlo simulation of telescope cooling. The need for further measurements of directional properties is stressed.  相似文献   

16.
The scope of observational astronomy in the gamma-ray region of the spectrum is vast. The intimate relationship of these energetic photons with their parent particles and fields provides a direct probe of the high-energy physics phenomena which take place throughout the Universe. As an added bonus the gamma-ray domain contains a wealth of diagnostic information within discrete emission lines, which are derived from a variety of processes including nuclear de-excitation, cyclotron emission, and matter-antimatter annihilation. Consequently observational gamma-ray astronomy addresses directly some of the most fundamental problems in both physics and astrophysics. However, low-energy gamma-rays are the most penetrating photons encountered in nature, and, whilst this factor provides a deep probe of cosmic objects, it ensures that gamma-ray telescopes are massive, both in terms of the stopping power required in the detector systems as well as their shields. Furthermore, the intimate relationship of gamma-rays with nuclear de-excitations ensures that the telescope itself becomes a bright source of background noise, a factor which is aggravated by the necessity that gamma-ray telescopes are obliged to operate in regions pervaded by intense particle fluxes. The background noise experienced in gamma-ray telescopes is, therefore, both high and extremely complex in its origin, and due to the high-energy content of individual photons, their numbers which arrive from distant cosmic sources are necessarily low, even for those objects which radiate the bulk of their power at gamma-ray wavelengths. Current gamma-ray telescopes are thus obliged to operate under conditions of intrinsically low signal-to-noise ratio and it is vital that techniques are developed which reduce the background noise level to more acceptable levels, thus improving the sensitivity. To achieve such a goal, a thorough understanding of the sources of background noise is first required before effective measures can be taken for its reduction.In this paper the sources of background noise are reviewed with the aim to obtain a quantitative analysis of individual contributions, as derived from the various classes of irradiative particle fluxes. The estimated contributions from the individual sources are combined in order to evaluate the total background level of a given telescope in a specific radiation environment, which for practical considerations generally relates to the orbit choice and detailed design of the telescope. The published background noise spectra of a number of past missions are compared to the computed values so as to provide an assessment of the validity of the overall calculations. The level of agreement achieved indicates that a good understanding of the sources of background noise exists. Finally some possibilities for the improvement of the sensitivity of future gammaray telescopes, in terms of the reduction of the background noise, are discussed.  相似文献   

17.
The designs of cold space telescopes, cryogenic and radiatively cooled, are similar in most elements and both benefit from orbits distant from the Earth. In particular such orbits allow the anti-sunward side of radiatively-cooled spacecraft to be used to provide large cooling radiators for the individual radiation shields. Designs incorporating these features have predictedT tel near 20 K. The attainability of such temperatures is supported by limited practical experience (IRAS, COBE). Supplementary cooling systems (cryogens, mechanical coolers) can be advantageously combined with radiative cooling in hybrid designs to provide robustness against deterioration and yet lower temperatures for detectors, instruments, and even the whole telescope. The possibility of such major additional gains is illustrated by the Very Cold Telescope option under study forEdison, which should offerT tel5 K for a little extra mechanical cooling capacity.  相似文献   

18.
通过对1.2m红外望远镜和等高仪的圆感应同步器及整机测角系统检测,提出4.3m望远镜的检则方案。  相似文献   

19.
In the highly technological aerospace world, paper is still widely used to document space system integration and test (I&T) operations. E-Logbook (electronic logbook) is a new technology designed to replace current documentation processes of space system I&T operations, such as connector mate and demate, flight hardware and flight software component installation, material mixes or electronic ground support equipment (EGSE) validation. It also includes new documentation concepts, such as the shift log, which improves project awareness and optimizes the shift hand-over process, and the configuration log, which instantly reports on the global I&T state of the space system and greatly enhances information gathering prior to major test events or project reviews. The design of E-Logbook focuses not only on a reliable and efficient relational database, but also on an ergonomic human-computer interactive (HCI) system of graphical user interfaces (GUI) that can help reduce human error and improve I&T discipline and management oversight. E-Logbook has been used for the I&T of the large area telescope (LAT) of the gamma-ray large area space telescope (GLAST) scientific satellite at the Stanford Linear Accelerator Center (SLAC). After 19 months of operation, more than 41,000 records have been created for the different documentation components or I&T Logs, with no data having been corrupted or critically lost. 94% of the operators and 100% of the management exposed to E-Logbook prefer it to paper logbooks and recommend its use in the aerospace industry.  相似文献   

20.
《中国航空学报》2021,34(4):115-123
Optical glass elements with the ellipsoidal surface are used in many critical aerospace instruments, such as satellites, telescope and cameras. Their optical performance is mainly affected by profile accuracy and surface quality. In this paper, a rectangular ellipsoid surface is precisely ground on a BK7 optical glass blank by grating scanning grinding path with a three-axis CNC precision surface grinder. A profile error compensation procedure for ellipsoidal grinding is proposed based on the error analysis about the primary error sources in the XY and YZ projection planes during the grinding process. The mathematical prediction models of the wheel arc profile error, the measurement and wear error of the grinding wheel radiuses are established. By applying the proposed error compensation procedure, the profile accuracy of the ellipsoidal surface was improved from 4 μm to 2 μm in the XY plane, and improved from 15 μm to 5 μm in the YZ plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号