首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
旋转对弯扭涡轮叶片前缘气膜冷却的影响   总被引:1,自引:0,他引:1  
基于热色液晶(TLC)测温技术,开展了转速(攻角)和吹风比对弯扭涡轮叶片前缘区域气膜冷却效率分布影响的实验研究。实验中涡轮转速分别为400 r/min(正攻角)、550 r/min(零攻角)和700 r/min(负攻角),平均吹风比为0.5~1.25。冷却工质采用氮气,对应的射流-主流密度比为1.04。基于涡轮动叶弦长的涡轮出口主流雷诺数为60 800。实验结果表明:转速是决定涡轮叶片前缘气膜冷却效率分布最重要的参数之一。随着转速的增大,滞止线的位置会从压力侧(PS)移动到吸力侧(SS)。当吹风比相同时,面平均气膜冷却效率随转速的增大而逐渐增大;当转速相同时,面平均气膜冷却效率随吹风比的增大而增大。   相似文献   

2.
短周期风洞中导叶表面压力和换热测量   总被引:1,自引:0,他引:1  
在发动机典型雷诺数和压比状态下对一种放大导叶叶型进行了表面静压和换热测量.雷诺数对表面压力系数的影响较小,压比增大使压力系数减小,并且吸力面压力系数最低点后移.雷诺数增大时叶片表面传热系数增加,并且吸力面上边界层转捩位置提前.压比主要影响吸力面传热系数,小雷诺数时压比增大会推迟吸力面上边界层转捩点位置,大雷诺数且吸力面后半段为超声速流动时,增大压比使该区域传热系数降低.保持主流总温不变,叶片表面绝热壁温随叶栅压比增大而降低,相同压比下,叶片表面处于层流状态时绝热壁温比处于湍流状态时低.   相似文献   

3.
亚声速涡轮导叶前缘气膜冷却特性实验研究   总被引:3,自引:3,他引:0       下载免费PDF全文
为了获得亚声速涡轮导叶的前缘气膜冷却特性,在短周期高速风洞中对涡轮导叶前缘后倾扩张型孔气膜冷却试验件进行了实验,获得了涡轮叶片表面在不同主流雷诺数(Re=3.0×10~5~9.0×10~5)、二次流吹风比(M=0.5~2.4)和主流湍流度(Tu=1.3%,14.7%)下的气膜冷却效率和换热系数分布。实验叶片前缘有8排后倾扩张型气膜孔形成前缘喷淋冷却结构。结果表明:叶片前缘和压力面冷却效率随着吹风比的增大而升高,吸力面冷却效率随着吹风比的增大先升高后降低,最佳吹风比为0.8;在主流雷诺数(Re=3.0×10~5~9.0×105),改变雷诺数对叶片表面冷却效率的分布规律影响较小;叶片表面冷却效率随着湍流度的升高而降低,在小吹风比M=0.5下,高主流湍流度下的平均冷却效率降低50%左右,在M=2.4工况下,高湍流度下的平均冷却效率降低10%左右;叶片前缘冷气出流区域和压力面相对弧长为-0.4S/Smax-0.3的冷气重新贴附壁面区域换热系数比较高;高主流湍流度下,换热系数比较小,且吹风比变化对换热系数比的影响较小。  相似文献   

4.
基于流动控制技术的低稠度大负荷涡轮设计   总被引:2,自引:2,他引:0  
针对基于Pack B叶型的低稠度大负荷涡轮叶栅,采用定常数值模拟方法研究了两种流动控制技术——射流襟翼与Gurney襟翼(圆形、方形和圆弧凸起形)对低雷诺数下涡轮叶栅流动分离损失的控制.结果表明,射流襟翼和Gurney襟翼均可使主流流动偏转,增大叶型的气流转折角,影响叶型载荷系数;由于主流流动的偏转,影响并加速相邻叶型吸力面边界层流动,使得主流对于相邻叶片吸力面后缘处的逆压梯度降低,推迟了边界层层流向湍流的转捩,延长加速区,推迟了边界层分离,使得再附点位置提前,减小由逆压梯度引起的叶型吸力面分离区范围;H=1%的圆形Gurney襟翼和H=0.8%的方形Gurney襟翼均能在保证提高同等水平Zweifel载荷系数值的同时,将能量损失系数降到与设计栅距时相当的水平.  相似文献   

5.
为探究上游尾迹影响下的涡轮动叶表面换热特性,采用热色液晶技术测量了尾迹对光滑叶片表面换热分布的影响,获得了高低湍流度(2%,20%)来流时不同尾迹斯特劳哈尔数(0,0.12,0.36)条件下光滑动叶表面换热系数的实验数据。结果表明:当湍流度为2%时,随着尾迹斯特劳哈尔数增加,压力面换热系数增高幅度最大为142%,前缘区域增高幅度最大为7%,吸力面增高幅度最大为186%。当湍流度为20%时,尾迹对换热系数的影响相对减弱,随着尾迹斯特劳哈尔数增加,压力面换热系数增高幅度最大为10%,前缘区域增高幅度最大为10%,吸力面增高幅度最大为26%。尾迹导致吸力面转捩点提前,过渡区延长。整体看来,尾迹导致光滑叶片表面换热系数升高,对吸力面换热系数的影响大于压力面。  相似文献   

6.
某涡轮导向叶片换热实验与计算   总被引:2,自引:1,他引:1  
针对某涡轮导向叶片,实验测量了光滑叶片表面的压力系数和速比系数,并使用瞬态液晶测量技术获得了叶片全表面传热系数分布.分别使用shear stress transport(SST),k-ω,k-ε和renormalization group(RNG)k-ε四种湍流模型模拟了相同结构尺寸的叶栅通道内的流动与换热,并与实验结果进行对比.结果表明:压力面压力系数沿弧长方向逐渐下降,吸力面上压力系数先快速下降达到最小值后缓慢上升(出现逆压梯度).叶栅通道和叶片表面附近气流流动结构的复杂性导致叶片表面传热系数分布较为复杂.4种湍流模型对压力系数和速比系数的计算结果相互差别不大,计算数据也比较接近实验值.关于叶片表面传热系数,SST模型计算结果分布规律与实验接近,而其他3种湍流模型都没有能模拟出吸力面边界层分离对换热的影响.   相似文献   

7.
为获得高主流湍流度时全气膜涡轮叶片表面的冷却和换热特性,在跨声速风洞中实验研究了质量流量比(MFR)和主流雷诺数(Re)对叶片表面气膜冷却效率和换热系数比的影响。在叶片前缘布置了5排圆形孔,在吸力面和压力面分别布置了3排和6排圆形孔,实验结果由嵌入在叶片中截面的热电偶测得。实验中基于弦长的主流雷诺数的范围为3.0×105~9.0×105,叶栅出口马赫数Ma为0.8, MFR的范围是5.5%~12.5%,主流湍流度Tu为14.7%。实验结果表明:主流雷诺数升高显著增强了叶片表面的换热,使层流边界层到湍流边界层的转捩位置提前。对于吸力面S/C0.2的区域(S/C为当地弧长与弦长之比),气膜冷却效率受MFR影响明显,当MFR大于7.7%时提高MFR会导致气膜冷却效率降低;该区域的换热系数比在中低雷诺数时受MFR影响较小,在高雷诺数时随MFR升高而升高。压力面S/C-0.7区域的气膜冷却效率随MFR升高而升高,-0.7S/C-0.4区域的气膜冷却效率受MFR影响较小,对于整个压力面而言,MFR升高提高了叶片表面的换热系数。相对于叶片其它区域,压力面后半段区域和吸力面的气膜冷却效率受雷诺数影响较大。  相似文献   

8.
亚声叶型前缘形状对压气机气动性能的影响   总被引:1,自引:0,他引:1  
数值研究了四种亚声叶型前缘(平钝前缘,尖锐前缘,偏压力面前缘和偏吸力面前缘)形状偏差对压气机气动性能的影响。结果表明:四种偏差叶型的最小损失系数与原型相近,平钝前缘在叶根处的低损失攻角范围最小(降低了21.02%);偏压力面和偏吸力面前缘的角度范围与原型接近,但偏压力面前缘的负攻角范围减小,偏吸力面前缘的正攻角范围减小;尖锐前缘低损失攻角范围与原型相近。前缘形状偏差影响堵塞流量,偏压力面前缘堵塞流量降低最多(降低了0.80%);尖锐前缘和偏压力面前缘喘点压比与原型相近,平钝前缘和偏吸力面前缘喘点压比略低,各方案最高效率值相近;平钝前缘偏差对前缘马赫数分布影响最大,前缘形状偏差对进、出口相对气流角和叶片D因子影响不大。试验中应避免使用平钝前缘偏差叶型,或同一排叶片安装偏压力面与偏吸力面前缘偏差叶片。  相似文献   

9.
为了探究带有凹槽造型的涡轮叶片前缘结构的换热特性,采用瞬态热色液晶技术研究了凹槽对涡轮叶片前缘外表面换热系数的影响,获得了不同主流雷诺数以及湍流度下涡轮叶片原始前缘结构及带两种不同深度凹槽的前缘结构外表面的换热系数分布数据,并采用努塞尔数评估对比了三种结构下的换热特性。实验结果表明:原始前缘结构存在高换热系数区,随着湍流度的增大,高换热核心区显著增大;由于凹槽对滞止区域的流动产生了影响,带凹槽的前缘结构在不同工况下均表现出将原始结构高换热核心区分割为凹槽两侧突出边缘的高换热区和槽内低换热区的分布特征;凹槽可以显著降低前缘表面的换热强度,带浅凹槽的前缘结构在前缘表面的面平均努塞尔数相比原始前缘结构降低约7.9%~14.5%,带深凹槽的前缘结构相比原始前缘结构降低约9.1%~20.9%;与Reg=200,000相比,当Reg=150,000时,带凹槽的前缘结构相比原始结构的低换热优势更强。  相似文献   

10.
为了探究叶片表面粗糙度对叶型性能的影响规律,对压气机前弯叶片进行了变雷诺数多攻角工况的叶栅试验。不同粗糙度(Ra=3.0,6.2,12.3)叶片是在轮廓度有所保证的前提下,通过线切割机械加工、喷砂工艺改变表面粗糙度的方式获得。试验结果表明,粗糙度升高确实会诱发层流提前转捩,引起吸力面层流分离泡消失,除此之外,在低雷诺数(Re=9×10~5)下,Ra=3.0与Ra=6.2下叶片表面马赫数分布基本一致,到Ra=12.3时才会较明显表现出叶片吸力面峰值马赫数降低的现象。随着雷诺数升高,叶片表面马赫数分布随粗糙度变化的差异性逐渐显现,但当处于堵塞负攻角i=-6.4°下,粗糙度Ra≥6.2后,叶片性能却维持稳定。另外,粗糙度的增加会降低压力面的粘性损失,升高吸力面的粘性损失及尾迹掺混损失,因此随粗糙度升高,低雷诺数(Re=9×10~5)下总压损失随粗糙度升高呈先增后降的趋势。在高雷诺数(Re≥1.08×10~6),i=2.6°~-2.4°下粗糙度升高会导致损失升高,甚至发生严重的湍流边界层分离。与此同时,发现被研究叶型吸力面前缘(20%弦长前)马赫数分布对粗糙度并不敏感,不会因粗糙度的不同而发生变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号