首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Chang'E-1,the orbiter circling the moon 200km above the moon surface,is the first Chinese Lunar exploration satellite.The satellite was successfully launched on 24th October 2007.There are 8 kinds of scientific payloads onboard,including the stereo camera,the laser altimeter,the Sagnac-based interferometer image spectrometer,the Gamma ray spectrometer,the X-ray spectrom-eter,the microwave radiometer,the high energy particle detector,the solar wind plasma detector and a supporting payload data management system.Chang'E-1 opened her eyes to look at the moon and took the first batch of lunar pictures after her stereo camera was switched on in 20th November 2007.Henceforth all the instruments are successfully switched on one by one.After a period of parameter adjustment and initial check out,all scientific instruments are now in their normal operating phase.In this paper,the payloads and the initial observation results are introduced.  相似文献   

2.
嫦娥三号巡视器有效载荷   总被引:3,自引:1,他引:2       下载免费PDF全文
嫦娥三号巡视器配置了全景相机、测月雷达、红外成像光谱仪、粒子激发X射线谱仪四种科学探测有效载荷. 介绍了有效载荷的科学探测任务、系统设计方案和系统组成,描述了各有效载荷的方案设计要点,设计中的主要关注点及主要技术指标等.   相似文献   

3.
Chang'E-1, the first lunar mission in China, was successfully launched on October 24,2007, which opened the prelude of China's Lunar Exploration Program. Later on, the Chang'E-2 and Chang'E-3 satellites were successfully launched in 2010 and 2013, respectively. In order to achieve the science objectives, various payloads boarded the spacecraft. The scientific data from these instruments were received by Beijing and Kunming ground stations simultaneously. Up to now, about 5.628 Terabytes of raw data were received totally. A series of research results has been achieved. This paper presents a brief introduction to the main scientific results and latest progress from Chang'E-3 mission.  相似文献   

4.
嫦娥四号任务科学目标和有效载荷配置   总被引:5,自引:3,他引:2       下载免费PDF全文
嫦娥四号探测器由中继星、着陆器和巡视器组成.其科学目标为:月基低频射电天文观测研究,月球背面巡视区浅层结构探测研究以及月球背面巡视区形貌与矿物组分探测研究.共配置6台有效载荷设备,其中3台载荷设备配置在着陆器上,分别为降落相机、地形地貌相机和低频射电谱仪,其余3台配置在巡视器上,分别为全景相机、测月雷达和红外成像光谱仪.本文主要论述了嫦娥四号任务的科学目标、着陆区概况、有效载荷配置及系统设计、各有效载荷任务和主要技术指标等.   相似文献   

5.
通过对月球形貌可视化技术的研究, 分析了利用嫦娥一号获取的月球地形和正射影像数据制作月球形貌图的技术方法. 重点介绍了广泛应用于嫦娥一号数据处理和分析的晕渲地形图制作、月球地形影像假彩色融合和三维形貌场景构建的原理, 并给出了每种方法的应用实例. 这些方法为后续月球探测研究、月球空间信息系统以及``数字月球'的建设奠定了基础.   相似文献   

6.
China's Chang'E-4 probe successfully landed on 3 January 2019 in Von Kármán crater within the South Pole-Aitken (SPA) basin on the lunar far side. Based on the data acquired by the scientific payloads onboard the lander and the rover, the researchers obtained the related information such as the geologic and tectonic setting of the landing area, compositional characteristics of the landing surface materials, dielectric permittivity and density of the lunar soil. The experiments confirmed the existence of materials dominated by olivine and low-calcium pyroxene in the SPA basin on the lunar far side, which preliminary revealed the geological evolution history of the SPA basin and even that of the early time lunar crust, as well as the tectonic setting and formation mechanism of the materials in the lunar interior. The researchers also inves-tigated the particle radiation, Linear Energy Transaction (LET) spectrum, and so forth on the lunar surface. The low-frequency radio observations were carried out on the lunar far side for the first time as well. This article summarizes the latest scientific results in the past years, focusing on the Chang'E-4 mission. Key words CLEP, Chang'E-4, Scientific objectives, Scientific payloads, Scientific results   相似文献   

7.
中国月球与深空探测有效载荷技术的成就与展望   总被引:1,自引:1,他引:0  
有效载荷是实现科学目标最直接的工具,其技术手段和水平影响科学目标的可实现程度。简要回顾了中国月球与深空探测的科学目标与有效载荷配置。介绍了"嫦娥1号"和"嫦娥2号"月球环绕探测器中采用的CCD立体相机、干涉式成像光谱仪、激光高度计、微波探测仪、伽马射线谱仪、X射线谱仪、太阳风粒子探测仪、高能粒子探测仪等遥感探测类有效载荷的技术实现、探测结果和取得的成就。同时,也介绍了"嫦娥3号"月球着陆器和巡视器中采用的地形地貌相机、月基光学望远镜、极紫外相机、红外成像光谱仪、粒子激发X射线谱仪、测月雷达等就位和巡视探测类有效载荷的技术实现、探测结果和取得的成就。分析了有效载荷技术的发展趋势,展望了我国未来有效载荷技术的发展。  相似文献   

8.
Chang'E-1 Lunar Mission:An Overview and Primary Science Results   总被引:3,自引:0,他引:3       下载免费PDF全文
Chang'E-1 is the first lunar mission in China, which was successfully launched on Oct. 24th, 2007. It was guided to crash on the Moon on March 1, 2009, at 52.36oE, 1.50oS, in the north of Mare Fecunditatis. The total mission lasted 495 days, exceeding the designed life-span about four months. 1.37 Terabytes raw data was received from Chang'E-1. It was then processed into 4 Terabytes science data at different levels. A series of science results have been achieved by analyzing and applicating these data, especially "global image of the Moon of China's first lunar exploration mission'. Four scientific goals of Chang'E-1 have been achieved. It provides abundant materials for the research of lunar sciences and cosmochemistry. Meanwhile these results will serve for China's future lunar missions.   相似文献   

9.
Chang'E-1 and Chang'E-2 of China's Lunar Exploration Program (CLEP) have successfully achieved their mission. At the present time, only Chang'E-3 is still in operation, which was successfully launched on December 2, 2013. Chang'E-3 probe is the third robotic lunar mission of CLEP, which consists of a lander and a rover, with eight payloads on board the spacecraft. Up to December 21, 2015, more than 2.86TB raw data were received from these instruments onboard Chang'E-3 probe. A series of research results have been achieved. This paper gives a detailed introduction to the new scientific results obtained from Chang'E-3 missions.   相似文献   

10.
Korea is planning a series of lunar space programs in 2020 starting with a lunar orbiter and a lander with a rover. Compared to other countries, Korea has a relatively brief history in space and planetary sciences. With the expected Korean missions on the near-term horizon and the relatively few Korean planetary scientists, Korea Institute of Geoscience and Mineral Resources (KIGAM) has established a new planetary research group focusing on development of prospective lunar instruments, analysis of the publicly available planetary data of the Moon, organizing nationwide planetary workshops, and initiating planetary educational programs with academic institutions. Korea has also initiated its own rocket development program, which could acquire a rocket-launch capability toward the Korean lunar mission. For the prospective Korea’s lunar science program, feasibility studies for some candidate science payloads have been started since 2010 for an orbiter and a lander. The concept design of each candidate instrument has been accomplished in 2012. It is expected that the development of science payloads may start by 2014 as Phase A. Not only developing hardware required for the lunar mission but also educational activities for young students are high priorities for Korea. The new plan of the Korean lunar mission can be successfully accomplished with international cooperative outreach programs in conjunction with internationally accessible planetary data system (PDS). This paper introduces the KIGAM’s international cooperative planetary research and educational programs and also summarizes other nationwide new developments for Korean lunar research projects at Kyung Hee University and Hanyang University.  相似文献   

11.
嫦娥三号着陆器有效载荷   总被引:4,自引:2,他引:2       下载免费PDF全文
嫦娥三号着陆器配置了地形地貌相机、月基光学望远镜、极紫外相机、降落相机等四种科学探测有效载荷.介绍了有效载荷的科学探测任务、系统设计方案和系统组成,描述了各有效载荷的方案设计和主要技术指标等.   相似文献   

12.
This paper describes the scientific objectives and payloads of Tianwen-1, China’s first exploration mission to Mars. An orbiter, carrying a lander and a rover, lifted-off in July 2020 for a journey to Mars where it should arrive in February 2021. A suite of 13 scientific payloads, for in-situ and remote sensing, autonomously commanded by integrated payload controllers and mounted on the orbiter and the rover will study the magnetosphere and ionosphere of Mars and the relation with the solar wind, the atmosphere, surface and subsurface of the planet, looking at the topography, composition and structure and in particular for subsurface ice. The mission will also investigate Mars climate history. It is expected that Tianwen-1 will contribute significantly to advance our scientific knowledge of Mars.  相似文献   

13.
准确的月球表面温度分布模型对于开展月球探测具有重要意义. 目前有关月球表面温 度模型还缺乏对完整月球表面温度分布的计算方法研究. 本文建立了一套计算完整月球表面温度的方法, 其中月球阳面温度采用Racca模型直接计算得到; 对于月球阴面, 将其沿纬度方向划分为若干区域, 每个区域的地表土壤采用一维非稳态热传导模型, 根据嫦娥三号着陆器太阳电池阵在轨环月阶段的温度数据, 修正得到月球表面土壤导热系数、密度及比热容, 通过数值计算求解一维非稳态热传导方程, 得出任意时刻月球阴面表面温度随时间的变化. 嫦娥三号着陆器太阳电池阵环月阶段热分析结果与在轨温度符合较好, 初步说明本文建立的完整月球表面温度计算方法正确可行. 基于本文方法计算得到整个月球表面温度分布, 进一步研究了极月轨道太阳电池阵外热流变化规律.   相似文献   

14.
The moon has longstanding questions such as lunar environments, origin, formation and evolution, magnetization of crustal rocks, internal structure and possible life. The recent lunar missions, e.g., SELenological and ENgineering Explorer “KAGUYA” (SELENE), Chang’E-1, Chandrayaan-1, and Lunar Reconnaissance Orbiter/Lunar CRater Observation and Sensing Satellite (LRO/LCROSS), have provided new opportunities to explore and understand these issues. In this paper, we reviewed and presented the results and findings in the fields of lunar gravity, magnetic field, atmosphere, surface geomorphology and compositional variations, volcano, craters, internal structure, water and life science from new lunar exploration missions. In addition, the new objectives and scientific questions on lunar explorations in near future are presented and discussed.  相似文献   

15.
China has carried out four unmanned missions to the Moon since it launched Chang'E-1, the first lunar orbiter in 2007. With the implementation of the Chang'E-5 mission this year, the three phases of the lunar exploration program, namely orbiting, landing and returning, have been completed. In the plan of follow-up unmanned lunar exploration missions, it is planned to establish an experimental lunar research station at the lunar south pole by 2030 through the implementation of several missions, laying a foundation for the establishment of practical lunar research station in the future. China successfully launched its first Mars probe on 23 July 2020, followed in future by an asteroid mission, second Mars mission, and a mission to explore Jupiter and its moons.   相似文献   

16.
China's first Mars exploration mission is scheduled to be launched in 2020. It aims not only to conduct global and comprehensive exploration of Mars by use of an orbiter but also to carry out in situ observation of key sites on Mars with a rover. This mission focuses on the following studies:topography, geomorphology, geological structure, soil characteristics, water-ice distribution, material composition, atmosphere and ionosphere, surface climate, environmental characteristics, Mars internal structure, and Martian magnetic field. It is comprised of an orbiter, a lander, and a rover equipped with 13 scientific payloads. This article will give an introduction to the mission including mission plan, scientific objectives, scientific payloads, and its recent development progress.   相似文献   

17.
The high precision gamma-ray spectrometer (GRS) is scheduled to be launched on the lunar polar orbiter of the SELENE mission in 2007. The GRS consists of a large Ge crystal as a main detector and massive bismuth germanate crystals as an anticoincidence detector. A Stirling cryocooler was adopted in cooling the Ge detector. The flight model of SELENE GRS has been completed and an energy resolution of 3.0 keV (FWHM) at 1.332 MeV has been achieved. The spectrometer aims to observe nuclear line gamma rays emitted from the lunar surface in a wide energy range from 100 keV to 12 MeV for one year and more to obtain chemical composition on the entire lunar surface. The gamma-ray data enable us to study lunar geoscience problems including crust and mantle composition, and volatile reservoirs at polar regions.  相似文献   

18.
In this presentation, technological progress for China's microwave remote sensing is introduced. New developments of the microwave remote sensing instruments for China's lunar exploration satellite (Chang'E-1), meteorological satellite FY-3 and ocean dynamic measurement satellite (HY-2) are reported.  相似文献   

19.
月球主要构造特征:嫦娥一号月球影像初步研究   总被引:2,自引:0,他引:2  
月球在31亿年前已基本停止地质活动,从而保留了其形成初期的信息.这些信息对于认识月球、地球乃至太阳系的形成演化具有重要意义.在已有研究成果的基础上,结合嫦娥一号探月卫星CCD影像数据,从月海穹窿、撞击坑、月岭、断裂、月坑链、月溪及月谷等方面介绍了月球主要构造形式的地质特征、形貌特征及遥感影像特征,对其成因以及所隐含的地质意义进行了分析.结果表明,嫦娥一号CCD影像信息丰富,影像清晰,利用其CCD影像数据进一步研究月球的构造现象是可行的.  相似文献   

20.
由于月面温度环境变化幅度较大,月面载荷需要通过被动热控装置有效控制其与外部环境的换热量,使其本体温度维持在工作或储存温度范围内。文章分析了月面载荷与外部空间环境换热方式;论述了低当量发射率多层隔热组件设计与结构组成;讨论了月面载荷最外表面辐射屏ε和αs特殊设计及对其表面辐射平衡温度影响;指出利用月壤恒温层及其特性,展开式外多层隔热组件可以在载荷所在月面处形成一个温度相对稳定的月面小环境,其平均温度与当地月壤恒温层温度相当。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号