首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航空   1篇
航天技术   1篇
  2013年   1篇
  1989年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
The moon has longstanding questions such as lunar environments, origin, formation and evolution, magnetization of crustal rocks, internal structure and possible life. The recent lunar missions, e.g., SELenological and ENgineering Explorer “KAGUYA” (SELENE), Chang’E-1, Chandrayaan-1, and Lunar Reconnaissance Orbiter/Lunar CRater Observation and Sensing Satellite (LRO/LCROSS), have provided new opportunities to explore and understand these issues. In this paper, we reviewed and presented the results and findings in the fields of lunar gravity, magnetic field, atmosphere, surface geomorphology and compositional variations, volcano, craters, internal structure, water and life science from new lunar exploration missions. In addition, the new objectives and scientific questions on lunar explorations in near future are presented and discussed.  相似文献   
2.
The authors demonstrate that the efficiency of GaAs satellite solar cells can be increased to 31% (AM0) with two straightforward modifications. First, the wire grid reflection losses on the GaAs cell can be eliminated by attaching and aligning a thin grooved cover slide. The grooves in this cover slide deflect the incident light rays away from the wire grid lines into the cell active area, increasing the efficiency from 22% to 24%. The second modification involves making the GaAs cell transparent to the infrared energy that normally is wasted and then placing an infrared sensitive GaSb booster cell behind the GaAs cell. This increases the AM0 solar energy conversion efficiency from 24% to 31%. The GaAs/GaSb tandem solar cells have conversion efficiencies of 37% if used for terrestrial (AM1.5) rather than space (AM0) solar electric power systems, high enough that utility-scale solar electric power may someday be economical  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号