首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schoonen MA  Xu Y 《Astrobiology》2001,1(2):133-142
Dinitrogen is reduced in dilute hydrogen sulfide (H2S) solutions to ammonium at 120 degrees C. Experiments with dissolved dinitrogen (partial pressure 50 bar) in a 12 x 10(-3) mol/L H2S(aq) solution yield approximately 10(-5) mol/L NH4+ within 2-7 days. These yields are consistent with the equilibrium NH4+ concentration for the N-S-H system under these conditions. The formation of ammonium is catalyzed by the presence of freshly precipitated iron monosulfide. These results indicate that dinitrogen can be reduced at moderate temperatures in hydrothermal vent systems. Abiotic nitrogen reduction could have taken place within primordial hydrothermal vents, supplying some ammonia for the synthesis of C-H-O-N compounds via abiotic processes. The yield of ammonia via dinitrogen reduction by hydrogen sulfide, however, is so low that it is doubtful this process could have produced enough ammonia to sustain prebiotic hydrothermal synthesis of C-H-O-N compounds in or around vent systems.  相似文献   

2.
Hofmann A  Bolhar R 《Astrobiology》2007,7(2):355-388
The 3.5-3.2 Ga old volcano-sedimentary succession of the Barberton greenstone belt (South Africa) is characterized by lithological units that are repeated in a regular manner. Komatiitic, basaltic, and dacitic volcanic and volcaniclastic sequences are capped by zones of silica enrichment, followed by bedded carbonaceous cherts. Stratiform and crosscutting carbonaceous chert veins are common in silica alteration zones and bedded cherts. A detailed field study of several chert horizons and chert veins that range in age from 3.47 to 3.30 Ga revealed the importance of syndepositional hydrothermal activity for their origin. Bedded cherts consist of silicified detrital and tuffaceous sediments that were deposited on the seafloor. Silicification took place at the sediment-water interface as a result of diffuse upflow of low-temperature hydrothermal fluids, which gave rise to the formation of impermeable chert caps. Fluid overpressure resulted in the breaching of the cap rocks at times. Chert veins contain angular host rock fragments, replace wall rocks, and show evidence of multiple vein fillings and in situ brecciation of earlier generations of vein fillings. They represent hydraulic fractures that were initiated by overpressuring of the hydrothermal system. The vein networks were infilled, partly by hydrothermal chert precipitates, and partly by still unconsolidated (not yet silicified) sedimentary material derived from overlying sedimentary horizons. Field, petrographic, isotopic, and trace element evidence indicate that most carbonaceous matter represents sedimentary material that originated by biogenic processes in the Archean oceans and not by hydrothermal processes in the subsurface.  相似文献   

3.
McCollom TM 《Astrobiology》2007,7(6):933-950
Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.  相似文献   

4.
The availability of water-ice at the surface in the Mars polar cap and within the top meter of the high-latitude regolith raises the question of whether liquid water can exist there under some circumstances and possibly support the existence of biota. We examine the minimum temperatures at which liquid water can exist at ice grain-dust grain and ice grain-ice grain contacts, the minimum subfreezing temperatures at which terrestrial organisms can grow or multiply, and the maximum temperatures that can occur in martian high-latitude and polar regions, to see if there is overlap. Liquid water can exist at grain contacts above about -20 degrees C. Measurements of growth in organisms isolated from Siberian permafrost indicate growth at -10 degrees C and metabolism at -20 degrees C. Mars polar and high-latitude temperatures rise above -20 degrees C at obliquities greater than ~40 degrees, and under some conditions rise above 0 degrees C. Thus, the environment in the Mars polar regions has overlapped habitable conditions within relatively recent epochs, and Mars appears to be on the edge of being habitable at present. The easy accessibility of the polar surface layer relative to the deep subsurface make these viable locations to search for evidence of life.  相似文献   

5.
Studies on the ability of multicellular organisms to tolerate specific environmental extremes are relatively rare compared to those of unicellular microorganisms in extreme environments. Tardigrades are extremotolerant animals that can enter an ametabolic dry state called anhydrobiosis and have high tolerance to a variety of extreme environmental conditions, particularly while in anhydrobiosis. Although tardigrades have been expected to be a potential model animal for astrobiological studies due to their excellent anhydrobiotic and extremotolerant abilities, few studies of tolerance with cultured tardigrades have been reported, possibly due to the absence of a model species that can be easily maintained under rearing conditions. We report the successful rearing of the herbivorous tardigrade, Ramazzottius varieornatus, by supplying the green alga Chlorella vulgaris as food. The life span was 35 +/- 16.4 d, deposited eggs required 5.7 +/- 1.1 d to hatch, and animals began to deposit eggs 9 d after hatching. The reared individuals of this species had an anhydrobiotic capacity throughout their life cycle in egg, juvenile, and adult stages. Furthermore, the reared adults in an anhydrobiotic state were tolerant of temperatures of 90 degrees C and -196 degrees C, and exposure to 99.8% acetonitrile or irradiation with 4000 Gy (4)He ions. Based on their life history traits and tolerance to extreme stresses, R. varieornatus may be a suitable model for astrobiological studies of multicellular organisms.  相似文献   

6.
The surface expressions of hydrothermal systems are prime targets for astrobiological exploration, and fossil systems on Earth provide an analogue to guide this endeavor. The Paleozoic Mt. Gee-Mt. Painter system (MGPS) in the Northern Flinders Ranges of South Australia is exceptionally well preserved and displays both a subsurface quartz sinter (boiling horizon) and remnants of aerial sinter pools that lie in near-original position. The energy source for the MGPS is not related to volcanism but to radiogenic heat produced by U-Th-K-rich host rocks. This radiogenic heat source drove hydrothermal circulation over a long period of time (hundreds of millions of years, from Permian to present), with peaks in hydrothermal activity during periods of uplift and high water supply. This process is reflected by ongoing hot spring activity along a nearby fault. The exceptional preservation of the MGPS resulted from the lack of proximal volcanism, coupled with tectonics driven by an oscillating far-field stress that resulted in episodic basement uplift. Hydrothermal activity caused the remobilization of U and rare earth elements (REE) in host rocks into (sub)economic concentrations. Radiogenic-heat-driven systems are attractive analogues for environments that can sustain life over geological times; the MGPS preserves evidence of episodic fluid flow for the past ~300 million years. During periods of reduced hydrothermal activity (e.g., limited water supply, quiet tectonics), radiolytic H(2) production has the potential to support an ecosystem indefinitely. Remote exploration for deposits similar to those at the MGPS systems can be achieved by combining hyperspectral and gamma-ray spectroscopy.  相似文献   

7.
Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.  相似文献   

8.
Walsh MM 《Astrobiology》2004,4(4):429-437
Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation.  相似文献   

9.
Fluid inclusions in minerals hold the potential to provide important data on the chemistry of the ambient fluids during mineral precipitation. Especially interesting to astrobiologists are inclusions in low-temperature minerals that may have been precipitated in the presence of microorganisms. We demonstrate that it is possible to obtain data from inclusions in chemosynthetic carbonates that precipitated by the oxidation of organic carbon around methane-bearing seepages. Chemosynthetic carbonates have been identified as a target rock for astrobiological exploration. Other surficial rock types identified as targets for astrobiological exploration include hydrothermal deposits, speleothems, stromatolites, tufas, and evaporites, each of which can contain fluid inclusions. Fracture systems below impact craters would also contain precipitates of minerals with fluid inclusions. As fluid inclusions are sealed microchambers, they preserve fluids in regions where water is now absent, such as regions of the martian surface. Although most inclusions are < 5 microns, the possibility to obtain data from the fluids, including biosignatures and physical remains of life, underscores the advantages of technological advances in the study of fluid inclusions. The crushing of bulk samples could release inclusion waters for analysis, which could be undertaken in situ on Mars.  相似文献   

10.
Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E (h)-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization--the reaction of olivine- and pyroxene-rich rocks with water--produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.  相似文献   

11.
Quinn R  Zent AP  McKay CP 《Astrobiology》2006,6(4):581-591
Carbonates, predominately MgCO3, have been spectroscopically identified at a level of 2-5% in martian dust. However, in spite of this observation, and a large number of climate studies that suggest 1 to several bars of CO2 should be sequestered in carbonate rocks, no outcrop-scale exposures of carbonate have been detected anywhere on Mars to date. To address one hypothesis for this long-standing puzzle, the effect of ultraviolet (UV) light on the stability of calcium carbonate in a simulated martian atmosphere was experimentally investigated. Using 13C-labeled calcite, we found no experimental evidence of the UV photodecomposition of calcium carbonate in a simulated martian atmosphere. Extrapolating the lower limit of detection of our experimental system to an upper limit of carbonate decomposition on Mars yields a quantum efficiency of 3.5 x 10(-8) molecules/photon over the wavelength interval of 190-390 nm and a maximum UV photodecomposition rate of 1.2 x 10(-13) kg m(-2) s(-1) from a calcite surface. The maximum loss of bulk calcite due to this process would be 2.5 nm year(-1) (Mars year). However, calcite is expected to be thermodynamically stable on the surface of Mars, and potential UV photodecomposition reaction mechanisms indicate that, though calcium carbonate may decompose under vacuum, it would be stable in a CO2 atmosphere. Given the expected stability of carbonate on Mars and our inability to detect carbonate decomposition, we conclude that it is unlikely that the apparent absence of extensive carbonate deposits on the martian surface is due to UV photodecomposition in the current environment.  相似文献   

12.
Head-down and head-up [correction of heat-up] tilted bedrest (5 degrees) and head out water immersion (HOWI) for 6 hr were compared. Parameters: Cardiac output (rebreathing method), blood pressure (arm cuff), forearm blood flow (venous occlusion plethysmography), total peripheral (TPR), and forearm vascular (FVR) resistances, Hct, Hb, relative plasma volume (PV) changes, and plasma catecholamines (single-isotope assay). During HOWI there was as expected a decrement in TPR, FVR, Mean arterial pressure (MAP, from 100 to 80 mmHg), Hct, and PV, and--as a new finding--catecholamines, which were 30-50% lower compared with both +5 and -5 degrees bedrest. During head down tilt, MAP was elevated (to 100-110 mmHg) and catecholamines did not fall, while TPR and EVR slowly decreased over 6 hr. HOWI is a stronger stimulus than -5 degrees bedrest, probably because HOWI elevates central venous pressure more markedly emptying the peripheral veins, while bedrest permits a distension of veins, which induces an increase in sympathetic nervous activity.  相似文献   

13.
The release and oxidation of ferrous iron during aqueous alteration of the mineral olivine is known to reduce aqueous solutions to such extent that molecular hydrogen, H2, forms. H2 is an efficient energy carrier and is considered basal to the deep subsurface biosphere. Knowledge of the potential for H2 generation is therefore vital to understanding the deep biosphere on Earth and on extraterrestrial bodies. Here, we provide a review of factors that may reduce the potential for H2 generation with a focus on systems in the core temperature region for thermophilic to hyperthermophilic microbial life. We show that aqueous sulfate may inhibit the formation of H2, whereas redox-sensitive compounds of carbon and nitrogen are unlikely to have significant effect at low temperatures. In addition, we suggest that the rate of H2 generation is proportional to the dissolution rate of olivine and, hence, limited by factors such as reactive surface areas and the access of water to fresh surfaces. We furthermore suggest that the availability of water and pore/fracture space are the most important factors that limit the generation of H2. Our study implies that, because of large heat flows, abundant olivine-bearing rocks, large thermodynamic gradients, and reduced atmospheres, young Earth and Mars probably offered abundant systems where microbial life could possibly have emerged.  相似文献   

14.
We have analyzed the degree of racemization of aspartic acid in permafrost samples from Northern Siberia, an area from which microorganisms of apparent ages up to a few million years have previously been isolated and cultured. We find that the extent of aspartic acid racemization in permafrost cores increases very slowly up to an age of approximately 25,000 years (around 5 m in depth). The apparent temperature of racemization over the age range of 0-25,000 years, determined using measured aspartic acid racemization rate constants, is -19 degrees C. This apparent racemization temperature is significantly lower than the measured environmental temperature (-11 to -13 degrees C) and suggests active recycling of D-aspartic acid in Siberian permafrost up to an age of around 25,000 years. This indicates that permafrost organisms are capable of repairing some molecular damage incurred while in a "dormant" state over geologic time.  相似文献   

15.
Viability rates were determined for microbial populations of Escherichia coli and Deinococcus radiodurans under the environmental stresses of low temperature (-35 degrees C), low-pressure conditions (83.3 kPa), and ultraviolet (UV) irradiation (37 W/m(2)). During the stress tests the organisms were suspended in saltwater soil and freshwater soil media, at variable burial depths, and in seawater. Microbial populations of both organisms were most susceptible to dehydration stress associated with low-pressure conditions, and to UV irradiation. However, suspension in a liquid water medium and burial at larger depths (5 cm) improved survival rates markedly. Our results indicate that planetary surfaces that possess little to no atmosphere and have low water availability do not constitute a favorable environment for terrestrial microorganisms.  相似文献   

16.
This study describes brine lenses (cryopegs) found in Siberian permafrost derived from ancient marine sediment layers of the Arctic Ocean. The cryopegs were formed and isolated from sediment ~100,000-120,000 years ago. They remain liquid at the in situ temperature of -10 degrees C as a result of their high salt content (170-300 g/L). [(14)C] Glucose is taken up by the cryopeg biomass at -15 degrees C, indicating microbial metabolism at low temperatures in this habitat. Furthermore, aerobic, anaerobic heterotrophs, sulfate reducers, acetogens, and methanogens were detected by most probable number analysis. Two psychrophilic microbes were isolated from the cryopegs, a Clostridium and a Psychrobacter. The closest relatives of each were previously isolated from Antarctica. The cryopeg econiche might serve as a model for extraterrestrial life, and hence is of particular interest to astrobiology.  相似文献   

17.
We have investigated an enzymatic racemization reaction as a marker for extraterrestrial life, which resulted in a change in optical rotation of a mandelic acid over time, as measured by polarimetry. Mandelate racemase was active in aqueous buffer in a temperature range between 0 degrees C and 70 degrees C and also in concentrated ammonium salt solutions and water-in-oil microemulsions in a temperature range between -30 degrees C and 60-70 degrees C; however, the enzyme was not active in several organic cryosolvents. Thus, we have demonstrated that concentrated ammonium salt solutions and water-in-oil microemulsions, both of which are able to form on extraterrestrial planets and moons in the presence of liquid water, are suitable media for enzyme reactions at subzero temperatures. Kinetic data for the mandelate racemase reaction obtained by polarimetry, while reproducible and internally consistent, differed significantly from several sets of data obtained previously by other methods such as chromatography and hydrogen-deuterium exchange. However, we conclude that reactions yielding a polarimetric signal, such as the racemizations employed in this work, are suitable mechanisms by which to utilize a change in chirality over time as a tool to detect signs of life.  相似文献   

18.
Dissolved H(2) concentrations up to the mM range and H(2) levels up to 9-58% by volume in the free gas phase are reported for groundwaters at sites in the Precambrian shields of Canada and Finland. Along with previously reported dissolved H(2) concentrations up to 7.4 mM for groundwaters from the Witwatersrand Basin, South Africa, these findings indicate that deep Precambrian Shield fracture waters contain some of the highest levels of dissolved H(2) ever reported and represent a potentially important energy-rich environment for subsurface microbial life. The delta (2)H isotope signatures of H(2) gas from Canada, Finland, and South Africa are consistent with a range of H(2)-producing water-rock reactions, depending on the geologic setting, which include both serpentinization and radiolysis. In Canada and Finland, several of the sites are in Archean greenstone belts characterized by ultramafic rocks that have under-gone serpentinization and may be ancient analogues for serpentinite-hosted gases recently reported at the Lost City Hydrothermal Field and other hydrothermal seafloor deposits. The hydrogeologically isolated nature of these fracture-controlled groundwater systems provides a mechanism whereby the products of water-rock interaction accumulate over geologic timescales, which produces correlations between high H(2) levels, abiogenic hydrocarbon signatures, and the high salinities and highly altered delta (18)O and delta (2)H values of these groundwaters. A conceptual model is presented that demonstrates how periodic opening of fractures and resultant mixing control the distribution and supply of H(2) and support a microbial community of H(2)-utilizing sulfate reducers and methanogens.  相似文献   

19.
Accumulation of biopolymers should have been an essential step for the emergence of life on primitive Earth. However, experimental simulations for submarine hydrothermal vent systems in which high-temperature water spouts through minerals within a short time scale have not been attempted. Here, we show that enhancement of hydrothermal oligopeptide elongation by naturally occurring minerals was successfully verified for the first time by using a mineral-mediated hydrothermal flow reactor system (MMHF). MMHF consists of a narrow tubular reactor packed with mineral particles, and the enhancement or inhibitory activities of 10 types of naturally occurring minerals were successfully evaluated for an elongation reaction from (Ala)(4) to (Ala)(5) and higher oligopeptides in the absence of condensation reagents. It was unexpected that calcite and dolomite facilitated the elongation from (Ala)(4) to (Ala)(5) and higher oligopeptides with 28% yield at pH 7, while tourmaline, galena, apatite, mica, sphalerite, quartz, chalcopyrite, and pyrite did not show enhancement activities. These facts suggest the importance of carbonate minerals for the accumulation of peptide in primitive Earth environments.  相似文献   

20.
Glavin DP  Bada JL 《Astrobiology》2001,1(3):259-269
The delivery of amino acids by micrometeorites to the early Earth during the period of heavy bombardment could have been a significant source of the Earth's prebiotic amino acid inventory provided that these organic compounds survived atmospheric entry heating. To investigate the sublimation of amino acids from a micrometeorite analog at elevated temperature, grains from the CM-type carbonaceous chondrite Murchison were heated to 550 degrees C inside a glass sublimation apparatus (SA) under reduced pressure. The sublimed residue that had collected on the cold finger of the SA after heating was analyzed for amino acids by HPLC. We found that when the temperature of the meteorite reached approximately 150 degrees C, a large fraction of the amino acid glycine had vaporized from the meteorite, recondensed onto the end of the SA cold finger, and survived as the rest of the grains heated to 550 degrees C. alpha-Aminoisobutryic acid and isovaline, which are two of the most abundant non-protein amino acids in Murchison, did not sublime from the meteorite and were completely destroyed during the heating experiment. Our experimental results suggest that sublimation of glycine present in micrometeorite grains may provide a way for this amino acid to survive atmospheric entry heating at temperatures > 550 degrees C; all other amino acids apparently are destroyed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号