首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Minerals adsorb more amino acids with charged R-groups than amino acids with uncharged R-groups. Thus, the peptides that form from the condensation of amino acids on the surface of minerals should be composed of amino acid residues that are more charged than uncharged. However, most of the amino acids (74%) in today's proteins have an uncharged R-group. One mechanism with which to solve this paradox is the use of organophilic minerals such as zeolites. Over the range of pH (pH 2.66-4.50) used in these experiments, the R-group of histidine (His) is positively charged and neutral for alanine (Ala), cysteine (Cys), and methionine (Met). In acidic hydrothermal environments, the pH could be even lower than those used in this study. For the pH range studied, the zeolites were negatively charged, and the overall charge of all amino acids was positive. The conditions used here approximate those of prebiotic Earth. The most important finding of this work is that the relative concentrations of each amino acid (X=His, Met, Cys) to alanine (X/Ala) are close to 1.00. This is an important result with regard to prebiotic chemistry because it could be a solution for the paradox stated above. Pore size did not affect the adsorption of Cys and Met on zeolites, and the Si/Al ratio did not affect the adsorption of Cys, His, and Met. ZSM-5 could be used for the purification of Cys from other amino acids (Student-Newman-Keuls test, p<0.05), and mordenite could be used for separation of amino acids from each other (Student-Newman-Keuls test, p<0.05). As shown by Fourier transform infrared (FT-IR) spectra, Ala interacts with zeolites through the [Formula: see text] group, and methionine-zeolite interactions involve the COO, [Formula: see text], and CH(3) groups. FT-IR spectra show that the interaction between the zeolites and His is weak. Cys showed higher adsorption on all zeolites; however, the hydrophobic Van der Waals interaction between zeolites and Cys is too weak to produce any structural changes in the Cys groups (amine, carboxylic, sulfhydryl, etc.); thus, the FT-IR and Raman spectra are the same as those of solid Cys.  相似文献   

2.
The delivery of extraterrestrial organic materials to primitive Earth from meteorites or micrometeorites has long been postulated to be one of the origins of the prebiotic molecules involved in the subsequent apparition of life. Here, we report on experiments in which vacuum UV photo-irradiation of interstellar/circumstellar ice analogues containing H(2)O, CH(3)OH, and NH(3) led to the production of several molecules of prebiotic interest. These were recovered at room temperature in the semi-refractory, water-soluble residues after evaporation of the ice. In particular, we detected small quantities of hydantoin (2,4-imidazolidinedione), a species suspected to play an important role in the formation of poly- and oligopeptides. In addition, hydantoin is known to form under extraterrestrial, abiotic conditions, since it has been detected, along with various other derivatives, in the soluble part of organic matter of primitive carbonaceous meteorites. This result, together with other related experiments reported recently, points to the potential importance of the photochemistry of interstellar "dirty" ices in the formation of organics in Solar System materials. Such molecules could then have been delivered to the surface of primitive Earth, as well as other telluric (exo-) planets, to help trigger first prebiotic reactions with the capacity to lead to some form of primitive biomolecular activity.  相似文献   

3.
4.
Holm NG  Andersson E 《Astrobiology》2005,5(4):444-460
The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of life on Earth and probably also to the other terrestrial planets.  相似文献   

5.
Thomas M  Walter MR 《Astrobiology》2002,2(3):335-351
An integrated analysis of both airborne and field short-wave infrared hyperspectral measurements was used in conjunction with conventional field mapping techniques to map hydrothermal alteration in the central portion of the Mount Painter Inlier in the Flinders Ranges, South Australia. The airborne hyperspectral data show the spatial distribution of spectrally distinct minerals occurring as primary minerals and as weathering and alteration products. Field spectral measurements, taken with a portable infrared mineral analyzer spectrometer and supported by thin-section analyses, were used to verify the mineral maps and enhance the level of information obtainable from the airborne data. Hydrothermal alteration zones were identified and mapped separately from the background weathering signals. A main zone of alteration, coinciding with the Paralana Fault zone, was recognized, and found to contain kaolinite, muscovite, biotite, and K-feldspar. A small spectral variation associated with a ring-like feature around Mount Painter was tentatively determined to be halloysite and interpreted to represent a separate hydrothermal fluid and fluid source, and probably a separate system. The older parts of the alteration system are tentatively dated as Permo-Carboniferous. The remote sensing of alteration at Mount Painter confirms that hyperspectral imaging techniques can produce accurate mineralogical maps with significant details that can be used to identify and map hydrothermal activity. Application of hyperspectral surveys such as that conducted at Mount Painter would be likely to provide similar detail about putative hydrothermal deposits on Mars.  相似文献   

6.
Oligonucleotides are structurally similar to short RNA strands. Therefore, their formation via non-enzymatic reactions is highly relevant to Gilbert's RNA world scenario (1986) and the origin of life. In laboratory synthesis of oligonucleotides from monomers, it is necessary to remove the water molecules from the reaction medium to shift the equilibrium in favor of oligonucleotide formation, which would have been impossible for reactions that took place in dilute solutions on the early Earth. Model studies designed to address this problem demonstrate that montmorillonite, a phyllosilicate common on Earth and identified on Mars, efficiently catalyzes phosphodiester-bond formation between activated mononucleotides in dilute solutions and produces RNA-like oligomers. The purpose of this study was to examine the sequences and regiospecificity of trimer isomers formed in the reaction of 5'-phosphorimidazolides of adenosine and uridine. Results demonstrated that regiospecificity and sequence specificity observed in the dimer fractions are conserved in their elongation products. With regard to regiospecificity, 61% of the linkages were found to be RNA-like 3',5'-phosphodiester bonds. With regard to sequence specificity, we found that 88% of the linear trimers were hetero-isomers with 61% A-monomer and 39% U-monomer incorporation. These results lend support to Bernal's hypothesis that minerals may have played a significant role in the chemical processes that led to the origin of life by catalyzing the formation of phosphodiester bonds in RNA-like oligomers.  相似文献   

7.
Claudio Maccone   《Acta Astronautica》2004,55(12):991-1006
A system of two space bases housing missiles is proposed to achieve the Planetary Defense of the Earth against dangerous asteroids and comets. We show that the layout of the Earth–Moon system with the five relevant Lagrangian (or libration) points in space leads naturally to only one, unmistakable location of these two space bases within the sphere of influence of the Earth. These locations are at the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth).

We show that placing bases of missiles at L1 and L3 would cause those missiles to deflect the trajectory of asteroids by hitting them orthogonally to their impact trajectory toward the Earth, so as to maximize their deflection. We show that the confocal conics are the best class of trajectories fulfilling this orthogonal deflection requirement.

An additional remark is that the theory developed in this paper is just a beginning of a larger set of future research work. In fact, while in this paper we only develop the Keplerian analytical theory of the Optimal Planetary Defense achievable from the Earth–Moon Lagrangian points L1 and L3, much more sophisticated analytical refinements would be needed to:

1. Take into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3;
2. add more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth–Moon system or from the surface of the Moon itself;
3. encompass the full range of missiles currently available to the US (and possibly other countries) so as to really see “which asteroids could be diverted by which missiles”, even in the very simplified scheme outlined here.

Outlined for the first time in February 2002, our Confocal Planetary Defense concept is a Keplerian Theory that proved simple enough to catch the attention of scholars, representatives of the US Military and popular writers. These developments could possibly mark the beginning of an “all embracing” mathematical vision of Planetary Defense beyond all learned activities, dramatic movies and unknown military plans covered by secret.  相似文献   


8.
We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).  相似文献   

9.
Chemolithoautotrophy based on reduced inorganic minerals is considered a primitive energy transduction system. Evidence that a high number of meteorites crashed into the planet during the early period of Earth history led us to test the ability of iron-oxidizing bacteria to grow using iron meteorites as their source of energy. Here we report the growth of two acidophilic iron-oxidizing bacteria, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans, on a piece of the Toluca meteorite as the only source of energy. The alteration of the surface of the exposed piece of meteorite, the solubilization of its oxidized metal constituents, mainly ferric iron, and the formation of goethite precipitates all clearly indicate that iron-meteorite-based chemolithotrophic metabolism is viable.  相似文献   

10.
The polymerization of amino acids leading to the formation of peptides and proteins is a significant problem for the origin of life. This problem stems from the instability of amino acids and the difficulty of their oligomerization in aqueous environments, such as seafloor hydrothermal systems. We investigated the stability of amino acids and their oligomerization reactions under high-temperature (180-400°C) and high-pressure (1.0-5.5?GPa) conditions, based on the hypothesis that the polymerization of amino acids occurred in marine sediments during diagenesis and metamorphism, at convergent margins on early Earth. Our results show that the amino acids glycine and alanine are stabilized by high pressure. Oligomers up to pentamers were formed, which has never been reported for alanine in the absence of a catalyst. The yields of peptides at a given temperature and reaction time were higher under higher-pressure conditions. Elemental, infrared, and isotopic analyses of the reaction products indicated that deamination is a key degradation process for amino acids and peptides under high-pressure conditions. A possible NH(3)-rich environment in marine sediments on early Earth may have further stabilized amino acids and peptides by inhibiting their deamination.  相似文献   

11.
Loison A  Dubant S  Adam P  Albrecht P 《Astrobiology》2010,10(10):973-988
Laboratory experiments carried out under plausible prebiotic conditions (under conditions that might have occurred at primitive deep-sea hydrothermal vents) in water and involving constituents that occur in the vicinity of submarine hydrothermal vents (e.g., CO, H(2)S, NiS) have disclosed an iterative Ni-catalyzed pathway of C-C bond formation. This pathway leads from CO to various organic molecules that comprise, notably, thiols, alkylmono- and disulfides, carboxylic acids, and related thioesters containing up to four carbon atoms. Furthermore, similar experiments with organic compounds containing various functionalities, such as thiols, carboxylic acids, thioesters, and alcohols, gave clues to the mechanisms of this novel synthetic process in which reduced metal species, in particular Ni(0), appear to be the key catalysts. Moreover, the formation of aldehydes (and ketones) as labile intermediates via a hydroformylation-related process proved to be at the core of the chain elongation process. Since this process can potentially lead to organic compounds with any chain length, it could have played a significant role in the prebiotic formation of lipidic amphiphilic molecules such as fatty acids, potential precursors of membrane constituents.  相似文献   

12.
The Institute of Biomedical Problems (IBMP) is the lead institution of the Russian Federation in the area of space biology and medicine. It has successfully implemented a set of innovation-based activities and projects to develop and introduce promising space products and technologies into the practices of Earth health care.  相似文献   

13.
Waltham D 《Astrobiology》2011,11(2):105-114
Planetary anthropic selection, the idea that Earth has unusual properties since, otherwise, we would not be here to observe it, is a controversial idea. This paper proposes a methodology by which to test anthropic proposals by comparison of Earth to synthetic populations of Earth-like planets. The paper illustrates this approach by investigating possible anthropic selection for high (or low) rates of Milankovitch-driven climate change. Three separate tests are investigated: (1) Earth-Moon properties and their effect on obliquity; (2) Individual planet locations and their effect on eccentricity variation; (3) The overall structure of the Solar System and its effect on eccentricity variation. In all three cases, the actual Earth/Solar System has unusually low Milankovitch frequencies compared to similar alternative systems. All three results are statistically significant at the 5% or better level, and the probability of all three occurring by chance is less than 10(-5). It therefore appears that there has been anthropic selection for slow Milankovitch cycles. This implies possible selection for a stable climate, which, if true, undermines the Gaia hypothesis and also suggests that planets with Earth-like levels of biodiversity are likely to be very rare.  相似文献   

14.
We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.  相似文献   

15.
The Siljan ring structure (368 +/- 1.1 Ma) is the largest known impact structure in Europe. It isa 65-km-wide, eroded, complex impact structure, displaying several structural units, including a central uplifted region surrounded by a ring-shaped depression. Associated with the impact crater are traces of a post-impact hydrothermal system indicated by precipitated and altered hydrothermal mineral assemblages. Precipitated hydrothermal minerals include quartz veins and breccia fillings associated with granitic rocks at the outer margin of the central uplift, and calcite, fluorite, galena, and sphalerite veins associated with Paleozoic carbonate rocks located outside the central uplift. Two-phase water/gas and oil/gas inclusions in calcite and fluorite display homogenization temperatures between 75 degrees C and 137 degrees C. With an estimated erosional unloading of approximately 1 km, the formation temperatures were probably not more than 10-15 degrees C higher. Fluid inclusion ice-melting temperatures indicate a very low salt content, reducing the probability that the mineralization was precipitated during the Caledonian Orogeny. Our findings suggest that large impacts induce low-temperature hydrothermal systems that may be habitats for thermophilic organisms. Large impact structures on Mars may therefore be suitable targets in the search for fossil thermophilic organisms.  相似文献   

16.
The application of forces in multi-body dynamical environments to permit the transfer of spacecraft from Earth orbit to Sun–Earth weak stability regions and then return to the Earth–Moon libration (L1 and L2) orbits has been successfully accomplished for the first time. This demonstrated that transfer is a positive step in the realization of a design process that can be used to transfer spacecraft with minimal Delta-V expenditures. Initialized using gravity assists to overcome fuel constraints; the ARTEMIS trajectory design has successfully placed two spacecrafts into Earth–Moon libration orbits by means of these applications.  相似文献   

17.
Iron-magnesium silicate bioweathering on Earth (and Mars?)   总被引:1,自引:0,他引:1  
We examined the common, iron-magnesium silicate minerals olivine and pyroxene in basalt and in mantle rocks to determine if they exhibit textures similar to bioweathering textures found in glass. Our results show that weathering in olivine may occur as long, narrow tunnels (1-3 microm in diameter and up to 100 microm long) and as larger irregular galleries, both of which have distinctive characteristics consistent with biological activity. These weathering textures are associated with clay mineral by-products and nucleic acids. We also examined olivine and pyroxene in martian meteorites, some of which experienced preterrestrial aqueous alteration. Some olivines and pyroxenes in the martian meteorite Nakhla were found to contain tunnels that are similar in size and shape to tunnels in terrestrial iron-magnesium silicates that contain nucleic acids. Though the tunnels found in Nakhla are similar to the biosignatures found in terrestrial minerals, their presence cannot be used to prove that the martian alteration features had a biogenic origin. The abundance and wide distribution of olivine and pyroxene on Earth and in the Solar System make bioweathering features in these minerals potentially important new biosignatures that may play a significant role in evaluating whether life ever existed on Mars.  相似文献   

18.
The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.  相似文献   

19.
Tsokolov S 《Astrobiology》2010,10(10):1031-1042
All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.  相似文献   

20.
《Space Policy》2014,30(3):170-173
The Global Exploration Roadmap (GER) is driven by several goals and objectives that include space science, the search for life as well as preparatory science activities to enable human space exploration. The Committee on Space Research (COSPAR), through its Commissions and Panels provides an international forum that supports and promotes space exploration worldwide. COSPAR's Panel on Exploration (PEX) investigates a stepwise approach of preparatory research on Earth and in Low Earth Orbit (LEO) to facilitate a future global space exploration program. We summarize recent activities and workshops of PEX in support of the GER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号