首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 532 毫秒
1.
One of the biggest challenges of the exploration of the Moon is the survival of the crew and the lunar assets during the lunar night. The environmental conditions on the lunar surface and its cycle, with long periods of darkness, make any long mission in need of specific amounts of heat and electricity to be successful. We have analyzed two different systems to produce heat and electricity on the Moon's surface. The first system consists of Thermal Wadis, sources of thermal power that can be used to supply heat to protect the exploration systems from the extreme cold during periods of darkness. Previous results showed that Wadis can supply enough heat to keep lunar devices such as rovers above their minimum operating temperature (approximately 243 K). The second system studied here is the Thermal Energy Storage (TES), which is able to run a heat engine during the lunar night to produce electricity. When the Sun is shining on the Moon's surface, the system can run the engine directly using the solar power and simultaneously heat a thermal mass. This thermal mass is used as a high temperature source to run the heat engine during the night. We present analytical and numerical calculations for the determination of an appropriate thermal mass for the TES system.  相似文献   

2.
The Siljan ring structure (368 +/- 1.1 Ma) is the largest known impact structure in Europe. It isa 65-km-wide, eroded, complex impact structure, displaying several structural units, including a central uplifted region surrounded by a ring-shaped depression. Associated with the impact crater are traces of a post-impact hydrothermal system indicated by precipitated and altered hydrothermal mineral assemblages. Precipitated hydrothermal minerals include quartz veins and breccia fillings associated with granitic rocks at the outer margin of the central uplift, and calcite, fluorite, galena, and sphalerite veins associated with Paleozoic carbonate rocks located outside the central uplift. Two-phase water/gas and oil/gas inclusions in calcite and fluorite display homogenization temperatures between 75 degrees C and 137 degrees C. With an estimated erosional unloading of approximately 1 km, the formation temperatures were probably not more than 10-15 degrees C higher. Fluid inclusion ice-melting temperatures indicate a very low salt content, reducing the probability that the mineralization was precipitated during the Caledonian Orogeny. Our findings suggest that large impacts induce low-temperature hydrothermal systems that may be habitats for thermophilic organisms. Large impact structures on Mars may therefore be suitable targets in the search for fossil thermophilic organisms.  相似文献   

3.
McCollom TM 《Astrobiology》2007,7(6):933-950
Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.  相似文献   

4.
Do large craters on Mars represent sites that contain aqueous and hydrothermal deposits that provide clues to astrobiological processes? Are these materials available for sampling in large craters? Several lines of evidence strongly support the exploration of large impact craters to study deposits important for astrobiology. The great depth of impact craters, up to several kilometers relative to the surrounding terrain, can allow the breaching of local aquifers, providing a source of water for lakes and hydrothermal systems. Craters can also be filled with water from outflow channels and valley networks to form large lakes with accompanying sedimentation. Impact melt and uplifted basement heat sources in craters > 50 km in diameter should be sufficient to drive substantial hydrothermal activity and keep crater lakes from freezing for thousands of years, even under cold climatic conditions. Fluid flow in hydrothermal systems is focused at the edges of large planar impact melt sheets, suggesting that the edge of the melt sheets will have experienced substantial hydrothermal alteration and mineral deposition. Hydrothermal deposits, fine-grained lacustrine sediments, and playa evaporite deposits may preserve evidence for biogeochemical processes that occurred in the aquifers and craters. Therefore, large craters may represent giant Petri dishes for culturing preexisting life on Mars and promoting biogeochemical processes. Landing sites must be identified in craters where access to the buried lacustrine sediments and impact melt deposits is provided by processes such as erosion from outflow channels, faulting, aeolian erosion, or excavation by later superimposed cratering events. Very recent gully formation and small impacts within craters may allow surface sampling of organic materials exposed only recently to the harsh oxidizing surface environment.  相似文献   

5.
Exopolymeric substances (EPS) are an integral component of microbial biofilms; however, few studies have addressed their silicification and preservation in hot-spring deposits. Through comparative analyses with the use of a range of microscopy techniques, we identified abundant EPS significant to the textural development of spicular, microstromatolitic, siliceous sinter at Champagne Pool, Waiotapu, New Zealand. Examination of biofilms coating sinter surfaces by confocal laser scanning microscopy (CLSM), environmental scanning electron microscopy (ESEM), cryo-scanning electron microscopy (cryo-SEM), and transmission electron microscopy (TEM) revealed contraction of the gelatinous EPS matrix into films (approximately 10 nm thick) or fibrillar structures, which is common in conventional SEM analyses and analogous to products of naturally occurring desiccation. Silicification of fibrillar EPS contributed to the formation of filamentous sinter. Matrix surfaces or dehydrated films templated sinter laminae (nanometers to microns thick) that, in places, preserved fenestral voids beneath. Laminae of similar thickness are, in general, common to spicular geyserites. This is the first report to demonstrate EPS templation of siliceous stromatolite laminae. Considering the ubiquity of biofilms on surfaces in hot-spring environments, EPS silicification studies are likely to be important to a better understanding of the origins of laminae in other modern and ancient stromatolitic sinters, and EPS potentially may serve as biosignatures in extraterrestrial rocks.  相似文献   

6.
吴耀  姚伟  吕晓辰  王磊  马蓉  王超 《宇航学报》2016,37(2):223-228
针对土卫六大气环境的特点,提出利用大气温度梯度发电的热机浮空器解决探测器能源问题。介绍该热机浮空器的系统组成和基本工作原理,分析应用于土卫六探测的可行性和发电性能。结果表明热机浮空器能够将土卫六低品位的大气热能转换为电能;涡轮机喷管喉部的半径和飞行高度等设计参数对热机的性能有较大的影响。  相似文献   

7.
We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).  相似文献   

8.
A source of energy to power metabolism may be a limiting factor in the abundance and spatial distribution of past or extant life on Mars. Although a global average of chemical energy available for microbial metabolism and biomass production on Mars has been estimated previously, issues of how the energy is distributed and which particular environments have the greatest potential to support life remain unresolved. We address these issues using geochemical models to evaluate the amounts of chemical energy available in one potential biological environment, Martian hydrothermal systems. In these models, host rock compositions are based upon the compositions of Martian meteorites, which are reacted at high temperature with one of three groundwater compositions. For each model, the values for Gibbs energy of reactions that are important for terrestrial chemosynthetic organisms and likely representative for putative Martian microbes are calculated. Our results indicate that substantial amounts of chemical energy may be available in these systems, depending most sensitively upon the composition of the host rock. From the standpoint of sources of metabolic energy, it is likely that suitable environments exist to support Martian life.  相似文献   

9.
Hofmann A  Bolhar R 《Astrobiology》2007,7(2):355-388
The 3.5-3.2 Ga old volcano-sedimentary succession of the Barberton greenstone belt (South Africa) is characterized by lithological units that are repeated in a regular manner. Komatiitic, basaltic, and dacitic volcanic and volcaniclastic sequences are capped by zones of silica enrichment, followed by bedded carbonaceous cherts. Stratiform and crosscutting carbonaceous chert veins are common in silica alteration zones and bedded cherts. A detailed field study of several chert horizons and chert veins that range in age from 3.47 to 3.30 Ga revealed the importance of syndepositional hydrothermal activity for their origin. Bedded cherts consist of silicified detrital and tuffaceous sediments that were deposited on the seafloor. Silicification took place at the sediment-water interface as a result of diffuse upflow of low-temperature hydrothermal fluids, which gave rise to the formation of impermeable chert caps. Fluid overpressure resulted in the breaching of the cap rocks at times. Chert veins contain angular host rock fragments, replace wall rocks, and show evidence of multiple vein fillings and in situ brecciation of earlier generations of vein fillings. They represent hydraulic fractures that were initiated by overpressuring of the hydrothermal system. The vein networks were infilled, partly by hydrothermal chert precipitates, and partly by still unconsolidated (not yet silicified) sedimentary material derived from overlying sedimentary horizons. Field, petrographic, isotopic, and trace element evidence indicate that most carbonaceous matter represents sedimentary material that originated by biogenic processes in the Archean oceans and not by hydrothermal processes in the subsurface.  相似文献   

10.
针对目前空间核电源在深空探测领域功率不足的问题,结合热离子热电转换空间核电源和碱金属热电转换空间核电源的发电方式,提出一种新型空间核电源。计算堆芯有效增殖因子、功率峰值因子、冷却剂空泡系数和停堆深度等安全性参数,并通过分析接收极功函数和碱金属热电转换系统电流密度等性能参数。之后,对比耦合发电系统与原热离子热电转换空间核电源和碱金属热电转换空间核电源的效率,发现新型耦合发电系统发电效率分别较另两种发电系统提高约6%和约10%。最后建立动态模型进行分析,确保核电源可以稳定运行,为大功率核电源设计提供理论依据。  相似文献   

11.
Gorbushina A 《Astrobiology》2003,3(3):543-554
So far mainly spores or other "differentiated-for-survival" structures were considered to be resistant against extreme environmental constraints (including extraterrestrial challenges). Microcolonial fungi (MCF) are unique growth structures formed by eukaryotic microorganisms inhabiting rock varnish surfaces in terrestrial deserts. They are here proposed as a new object for exobiological study. Sun-exposed desert rocks provide surface habitats with intense solar radiation, a scarce water supply, drastic changes in temperature, and episodic to sporadic availability of nutrients. These challenging conditions reduce the diversity of life to MCF, whose resistance to desiccation and tolerance for ultraviolet (UV) radiation make them survival specialists. Based upon our studies of MCF, we propose that the following mechanisms are universally employed for survival on rock surfaces: (1) compact tissue-like colony organization formed by thermodynamically optimal round cells embedded in extracellular polymeric substances, (2) the presence of several types of UV-absorbing compounds (melanins and mycosporines) and antioxidants (carotenoids, melanins, and mycosporines) that convey multiple stress resistance to desiccation, temperature, and irradiation changes, and (3) intracellular developmental mechanisms typical for these structures.  相似文献   

12.
Dissolved H(2) concentrations up to the mM range and H(2) levels up to 9-58% by volume in the free gas phase are reported for groundwaters at sites in the Precambrian shields of Canada and Finland. Along with previously reported dissolved H(2) concentrations up to 7.4 mM for groundwaters from the Witwatersrand Basin, South Africa, these findings indicate that deep Precambrian Shield fracture waters contain some of the highest levels of dissolved H(2) ever reported and represent a potentially important energy-rich environment for subsurface microbial life. The delta (2)H isotope signatures of H(2) gas from Canada, Finland, and South Africa are consistent with a range of H(2)-producing water-rock reactions, depending on the geologic setting, which include both serpentinization and radiolysis. In Canada and Finland, several of the sites are in Archean greenstone belts characterized by ultramafic rocks that have under-gone serpentinization and may be ancient analogues for serpentinite-hosted gases recently reported at the Lost City Hydrothermal Field and other hydrothermal seafloor deposits. The hydrogeologically isolated nature of these fracture-controlled groundwater systems provides a mechanism whereby the products of water-rock interaction accumulate over geologic timescales, which produces correlations between high H(2) levels, abiogenic hydrocarbon signatures, and the high salinities and highly altered delta (18)O and delta (2)H values of these groundwaters. A conceptual model is presented that demonstrates how periodic opening of fractures and resultant mixing control the distribution and supply of H(2) and support a microbial community of H(2)-utilizing sulfate reducers and methanogens.  相似文献   

13.
Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.  相似文献   

14.
To identify microscopic particles as actual fossil material, it would be useful to have a means of unambiguously recognizing which carbonaceous deposits found in rocks are residues from once-living organisms (i.e., biogenic material). Those residues consist of many different, mostly aromatic (i.e., benzene ring-containing), C-O-H-dominated molecules, and typically are called kerogens. Raman microprobe spectroscopy can be applied to minute samples of ancient kerogens either isolated from their host rocks or in situ in thin section. The Raman spectra generated by monochromatic blue or green laser excitation (e.g., at 488, 514, 532 nm) typically show only generic spectral features indicative of discontinuous arrays of condensed benzene rings (i.e., structures referred to as "disordered carbonaceous material"). Thus, despite the complex chemistry of kerogens and the expected presence of H, O, and N, the Raman spectra typically do not show any evidence of functional groups, such as CH, CH(2), CH(3), CO, and CN. Moreover, the same kind of Raman spectral signature as is obtained from kerogens also is obtained from many other poorly ordered carbonaceous materials that arise through nonbiological processes, such as in situ heating of organic or inorganic compounds (whether or not they are of biological origin), metamorphic mobilization of preexisting carbon compounds, and high-temperature precipitation from hydrothermal solutions. Thus, neither a Raman spectrum, nor a Raman image derived from such spectra, definitively can identify a sample as "kerogen," but only as "disordered carbonaceous material." Clearly, the fact that small, opaque grains consist of disordered carbonaceous material is necessary, but not sufficient, to prove them to be residues of cellular material and, thus, biogenic.  相似文献   

15.
This paper explores the possible relationship between space exploration and long swings in the economy and socio-technical systems. We posit that the early phases of long upswings are characterized by periods of optimism and the spirit of adventure that provided a motivation for large-scale explorations and other great infrastructure projects in the past. These Maslow Windows help us understand prior eras of exploration and cultural dynamism, and offer a hopeful scenario for space exploration in the next two decades. We offer some observations as to what the exploratory thrust might look like, including a return to the lunar surface combined with other activities. Of course, we also point out that the next great wave of space exploration will almost certainly have a much more international flavor than has heretofore been the case.  相似文献   

16.
To survive in deep subsurface environments, lithotrophic microbial communities require a sustainable energy source such as hydrogen. Though H2 can be produced when water reacts with fresh mineral surfaces and oxidizes ferrous iron, this reaction is unreliable since it depends upon the exposure of fresh rock surfaces via the episodic opening of cracks and fissures. A more reliable and potentially more voluminous H2 source exists in nominally anhydrous minerals of igneous and metamorphic rocks. Our experimental results indicate that H2 molecules can be derived from small amounts of H2O dissolved in minerals in the form of hydroxyl, OH- or O3Si-OH, whenever such minerals crystallized in an H2O-laden environment. Two types of experiments were conducted. Single crystal fracture experiments indicated that hydroxyl pairs undergo an in situ redox conversion to H2 molecules plus peroxy links, O3Si/OO\SiO3. While the peroxy links become part of the mineral structure, the H2 molecules diffused out of the freshly fractured mineral surfaces. If such a mechanism occurred in natural settings, the entire rock column would become a volume source of H2. Crushing experiments to facilitate the outdiffusion of H2 were conducted with common crustal igneous rocks such as granite, andesite, and labradorite. At least 70 nmol of H2/g diffused out of coarsely crushed andesite, equivalent at standard pressure and temperature to 5,000 cm3 of H2/m3 of rock. In the water-saturated, biologically relevant upper portion of the rock column, the diffusion of H2 out of the minerals will be buffered by H2 saturation of the intergranular water film.  相似文献   

17.
Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.  相似文献   

18.
There is a large discrepancy between potential needs for nuclear propulsion and power systems for the human exploration of Mars and the current status of R&D funding, public opinion, and governmental support for these technologies. Mission planners and spacecraft designers, energized by the recent claims of possible discovery of life on Mars and responding to increased public interest in the human exploration of Mars, frequently propose nuclear reactors and radioisotope thermoelectric generators (RTGs) for interplanetary spacecraft propulsion and for power supply on the surface of Mars. These plans and designs typically assume that reactors will be available "on-the-shelf," and do not take the extensive R&D costs required to develop such reactors into consideration. However, it is likely that current U.S. policies, if unchanged, will prohibit the launch of nuclear reactors and large RTGs in response to a perceived risk by the public.  相似文献   

19.
The context for the emergence of life on Earth sometime prior to 3.5 billion years ago is almost as big a puzzle as the definition of life itself. Hitherto, the problem has largely been addressed in terms of theoretical and experimental chemistry plus evidence from extremophile habitats like modern hydrothermal vents and meteorite impact structures. Here, we argue that extensive rafts of glassy, porous, and gas-rich pumice could have had a significant role in the origin of life and provided an important habitat for the earliest communities of microorganisms. This is because pumice has four remarkable properties. First, during eruption it develops the highest surface-area-to-volume ratio known for any rock type. Second, it is the only known rock type that floats as rafts at the air-water interface and then becomes beached in the tidal zone for long periods of time. Third, it is exposed to an unusually wide variety of conditions, including dehydration. Finally, from rafting to burial, it has a remarkable ability to adsorb metals, organics, and phosphates as well as to host organic catalysts such as zeolites and titanium oxides. These remarkable properties now deserve to be rigorously explored in the laboratory and the early rock record.  相似文献   

20.
A Schock  C Or  V Kumar 《Acta Astronautica》1997,41(12):801-816
The National Aeronautics and Space Administration’s recently inaugurated New Millennium program, with its emphasis on miniaturized spacecraft, has generated interest in a low-power (10–30 W), low-mass, high-efficiency RTPV (Radioisotope Thermophotovoltaic) power system. This led to a Department of Energy (DOE)-sponsored design study of such a system, which was assigned to OSC (formerly Fairchild) personnel, who have been conducting similar studies of a 75 W RTPV system for the Pluto Express Mission, with very encouraging results. The 75 W design employed two 250 W general purpose heat source (GPHS) modules that DOE had previously developed and safety-qualified for various space missions. These modules were too large for the small RTPVs described in this paper. To minimize the need for new development and safety verification studies, OSC generated derivative designs for 125 W and 62.5 W heat source modules containing identical fuel pellets, clads, impact shell and thermal insulation. OSC also generated a novel heat source support scheme to reduce the heat losses through the structural supports, and a new and much simpler radiator structure, eliminating the need for honeycombs and heat pipes.OSCs previous RTPV study had been based on the use of GaSb PV cells and spectrally selective IR filters that had been partially developed and characterized by Boeing (now EDTEK) personnel. They had supplied us with spectral data on filter reflectivities and cell quantum efficiencies. Two sets of data were furnished: one based on actual measurements made in 1993, and a more optimistic set based on projected performance improvements. Even the measured data set yielded significantly better system performance than present thermoelectric systems, but the projected data yielded much better system performance. Because of these encouraging results, OSC in the fall of 1994 initiated an experimental program at EDTEK to develop improved filters and cells, to demonstrate how much improvement can actually be achieved. OSC requested that first priority be given to filter improvements, because our system studies indicated that improved filters would have a much greater effect on system performance than cell improvements. By July 1995 EDTEK had achieved about 90% of the filter performance improvement projected in 1993. Work on further filter and cell improvements is continuing at EDTEK, as part of a joint effort with OSC and with DOE’s Mound Laboratory to develop and test a prototypic RTPV generator, with both an electrical heater and a radioisotope heat source.The improved filter performance data have been applied to the design of low-power (10–30 W) RTPV power systems, for possible application to new millennium spacecraft for missions to the outer solar system, where solar power generation is impractical. The results reported in this paper indicate that such systems can yield very attractive performance with the RTPV generator integrated with the miniaturized new millennium spacecraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号