首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
针对小行星表面微重力环境及样品机械属性未知的特点,提出了一种基于刷扫和研磨的复合式取样器设计方案。该取样器通过刷扫和研磨的复合方式进行取样,能够提高小行星表面取样任务的成功率。为了研究该取样器刷扫取样时刷轮叶片数、刷轮转速、推进速度、星壤参数等对取样效率的影响,研磨和刷扫复合取样的优越性以及刷扫和研磨时的驱动力矩,开展了样品颗粒相互作用建模及研磨取样动力学分析。基于离散元仿真软件EDEM,构建了取样器3D模型并仿真其在小行星表面取样,获得了样品收集质量与取样时间的关系曲线,分析了各个参数对取样效率的影响。结果表明:刷轮叶片数越多,刷轮转速越大,推进速度越大,取样器取样效率更高,刷扫和研磨的复合取样方法比起单一的刷扫取样,具有更高的取样效率。该研究为设计小行星取样器、取样参数设定和取样效果分析提供了依据。  相似文献   

2.
王振汉  张立勋  薛峰  陈旭阳 《宇航学报》2022,43(9):1268-1276
针对航天员微重力作业训练系统的重力场补偿控制这一关键技术,进行了理论和实验研究。分析了模拟微重力环境的机理,确定了微重力作业训练系统的总体结构方案,提出了一种基于电流反馈的重力补偿控制及多干扰力补偿控制策略。通过虚拟重力补偿控制实验,验证了在地面环境、动态作业过程中,模拟物体在不同空间重力加速度环境下的运动规律,实现了在重力方向模拟空间环境下物体移动的作业训练效果。研究成果为在地面实现三维作业训练系统的控制奠定了基础。  相似文献   

3.
针对小行星微重力环境,提出了一种具有蛋形外壳,利用弹簧蓄力的并联腿弹跳机器人。该机器人无论以何种姿态落地,均可在重力矩作用下恢复直立姿态。这一设计相对于需要额外主动装置恢复直立的先前方案,节省了恢复直立所需的能耗,在结构上更为简单可靠。文中阐述了完整的机构设计方案,及相应的结构参数优化计算方法。通过的样机实验,设计方法的有效性得到验证。  相似文献   

4.
利用核爆直接炸毁小行星或改变小行星的轨道以避免其与地球相撞,是近地小行星防御最主要的手段之一。文章基于美国爱荷华州立大学的超高速小行星拦截器(HAIV)概念,提出一种将原撞击引导器改为长杆撞击器的方案,采用自主研发的欧拉型冲击动力学仿真软件NTS模拟长杆撞击器对小行星连续开坑的过程,并在仿真中加入能量源以模拟核爆装置在不同深度爆炸对小行星产生的偏转与破坏效应。研究结果表明,采用长杆撞击器并合理控制撞击速度,能够引导核爆装置进入更深的地下爆炸,从而更加高效地耦合核爆能量,提升偏转小行星或直接摧毁小行星的能力。  相似文献   

5.
王景涛 《卫星应用》2002,10(4):60-64
介绍了在太空微重力环境下各种晶体生长、金属与合金,复合材料等材料加工应用;探讨了燃烧与微重力,生命科学中微重力利用等问题。  相似文献   

6.
基于准零刚度技术的微重力模拟悬吊装置设计与试验研究   总被引:2,自引:1,他引:2  
微重力地面模拟试验对验证航天器在轨运行的可靠性有重要意义。通常采用低刚度悬吊装置模拟微重力环境,但存在着承载能力低和自振干扰的问题。为解决这些问题,文章提出了一种考虑弹簧自振的准零刚度悬吊装置。首先,通过合理简化推导了承载弹簧在装置中的自振频率计算式,并分析了准零刚度悬吊装置的工作原理,得出设计参数应满足的条件。然后,根据试验承载需求和位移要求提出了参数设计流程,依此流程设计得到了一种可调节平衡位置与几何参数的准零刚度悬吊装置。最后,对装置进行了静力测试与悬吊-隔振试验,结果表明,该装置不仅具有准零刚度特性和较大承载能力,而且解决了自振干扰的问题,能较好地模拟微重力环境。  相似文献   

7.
介绍了中性浮力实验方法的原理和它在实验中所需的各种条件、设备以及实验用液体的选择。该实验方法能简便地模拟液体的微重力状态 ,并能给表面张力贮箱的设计提供很大的帮助。可利用它测量各种加速度下贮箱中推进剂的位置和形状 ,为表面张力贮箱推进剂管理装置(PMD)的设计提供可靠依据。  相似文献   

8.
载人小行星着陆探测模式设想   总被引:1,自引:1,他引:0  
《航天器工程》2016,(3):109-114
基于目前小行星探测技术特点,综述了当前国内外空间活动中两种典型探测模式,针对未来载人小行星着陆探测需求,提出了爬行式和基于小型机动操作载人飞船的两种探测模式,并对两种模式进行评价比较,基于小型机动操作载人飞船的探测模式具有机动性强、探测范围广、安全性高及对航天员操作能力要求低等特点,可为我国未来载人深空探测任务中微重力环境下星体表面作业方案设计提供参考。  相似文献   

9.
详细介绍了空间微重力环境对航天员骨代谢影响的国内外研究现状,并总结实验动物和骨组织细胞的太空飞行实验结果以及失重性骨丢失发生的可能机制。介绍了利用新型抗磁悬浮模拟失重技术平台获得的部分细胞实验结果。提出了尚需研发更多新型地基微重力模拟平台来开展骨代谢研究,同时需要更多真实空间飞行机会的进一步验证,为我国空间生物医学的发展建设提供参考。  相似文献   

10.
胡俊  任坦  王双峰  肖原 《宇航学报》2012,33(7):876-883
为探究通道高度对逆风火焰传播特性的影响,采用实验、数值模拟、理论分析方法对微重力条件下不同高度通道内热薄燃料火焰传播特性进行了研究。通道高度分别为10mm, 14mm和60mm的短时落塔微重力实验结果表明,相同逆风气流速度时,随通道高度增加,火焰传播速度逐渐增大,且10mm, 14mm和16mm高度通道下的火焰长度比约为通道半高度比的二次方关系。数值模拟与理论分析表明,微重力条件下,随通道高度增加,火焰传播速度、火焰长度先增大再减小,呈非单调的变化趋势。燃烧热释放速率随高度变化呈非单调变化趋势,同火焰传播速度变化规律基本一致。  相似文献   

11.
The low gravity of a small asteroid would present a challenge for an astronaut attempting to work on its surface. Extravehicular activities (EVAs) of the sophistication of the Apollo Moon missions are not likely to be possible if astronauts attempt to walk freely on the asteroid, hover above its surface, or anchor locally into the regolith. Manipulating large rocks, drilling, and excavating at multiple locations is a high priority science objective, but would be difficult without a hold-down mechanism. If the asteroid has even a small rotation rate, maneuvering precisely over its surface could be cumbersome. A plausible means of conducting complex EVAs is to tie ropes entirely around the asteroid, under which the astronaut is pushed downward onto the asteroid surface by the tension in the rope. The downward force provides an artificial gravity that permits the astronaut to drill, excavate, hammer, and carefully document materials on the surface without the worry of being thrown from the asteroid. An astronaut could also use the ropes as handholds or guides to maneuver freely over the surface.  相似文献   

12.
《Acta Astronautica》2008,62(11-12):1130-1135
The low gravity of a small asteroid would present a challenge for an astronaut attempting to work on its surface. Extravehicular activities (EVAs) of the sophistication of the Apollo Moon missions are not likely to be possible if astronauts attempt to walk freely on the asteroid, hover above its surface, or anchor locally into the regolith. Manipulating large rocks, drilling, and excavating at multiple locations is a high priority science objective, but would be difficult without a hold-down mechanism. If the asteroid has even a small rotation rate, maneuvering precisely over its surface could be cumbersome. A plausible means of conducting complex EVAs is to tie ropes entirely around the asteroid, under which the astronaut is pushed downward onto the asteroid surface by the tension in the rope. The downward force provides an artificial gravity that permits the astronaut to drill, excavate, hammer, and carefully document materials on the surface without the worry of being thrown from the asteroid. An astronaut could also use the ropes as handholds or guides to maneuver freely over the surface.  相似文献   

13.
3D-printing technologies are receiving an always increasing attention in architecture, due to their potential use for direct construction of buildings and other complex structures, also of considerable dimensions, with virtually any shape. Some of these technologies rely on an agglomeration process of inert materials, e.g. sand, through a special binding liquid and this capability is of interest for the space community for its potential application to space exploration. In fact, it opens the possibility for exploiting in-situ resources for the construction of buildings in harsh spatial environments. The paper presents the results of a study aimed at assessing the concept of 3D printing technology for building habitats on the Moon using lunar soil, also called regolith. A particular patented 3D-printing technology – D-shape – has been applied, which is, among the existing rapid prototyping systems, the closest to achieving full scale construction of buildings and the physical and chemical characteristics of lunar regolith and terrestrial regolith simulants have been assessed with respect to the working principles of such technology. A novel lunar regolith simulant has also been developed, which almost exactly reproduces the characteristics of the JSC-1A simulant produced in the US. Moreover, tests in air and in vacuum have been performed to demonstrate the occurrence of the reticulation reaction with the regolith simulant. The vacuum tests also showed that evaporation or freezing of the binding liquid can be prevented through a proper injection method. The general requirements of a Moon outpost have been specified, and a preliminary design of the habitat has been developed. Based on such design, a section of the outpost wall has been selected and manufactured at full scale using the D-shape printer and regolith simulant. Test pieces have also been manufactured and their mechanical properties have been assessed.  相似文献   

14.
月球表面热环境数值分析   总被引:16,自引:2,他引:16  
徐向华  梁新刚  任建勋 《宇航学报》2006,27(2):153-156,200
月球表面热环境的研究对探月活动有重要意义,本文用数值方法分析了月球表面的热环境.首先计算了不同纬度地区地表辐射平衡温度的周期波动,然后建立了月球地表土壤的一维非稳态热传导模型,用此模型计算了不同纬度地区地表温度的波动、月壤温度的波动及恒温层温度和深度,并讨论了月壤热物性对温度波动的影响.结果表明白天的地表温度主要取决于地表的辐射平衡温度,而夜晚的地表温度受到月壤热物性的影响.  相似文献   

15.
This paper presents the results of a mission concept study for an autonomous micro-scale surface lander also referred to as PANIC – the Pico Autonomous Near-Earth Asteroid In Situ Characterizer. The lander is based on the shape of a regular tetrahedron with an edge length of 35 cm, has a total mass of approximately 12 kg and utilizes hopping as a locomotion mechanism in microgravity. PANIC houses four scientific instruments in its proposed baseline configuration which enable the in situ characterization of an asteroid. It is carried by an interplanetary probe to its target and released to the surface after rendezvous. Detailed estimates of all critical subsystem parameters were derived to demonstrate the feasibility of this concept. The study illustrates that a small, simple landing element is a viable alternative to complex traditional lander concepts, adding a significant science return to any near-Earth asteroid (NEA) mission while meeting tight mass budget constraints.  相似文献   

16.
为研究不同重力环境对空间机构间隙铰链关节磨损的影响,将机械系统摩擦学行为和动力学行为相耦合,建立了磨损与动力学耦合分析模型和数值计算框架。首先采用非线性弹簧阻尼模型作为间隙处接触碰撞力的计算模型,同时采用Coulomb 法来计算运动副间隙处的摩擦力,进而建立了含间隙的机构动力学模型;然后通过基于Archard磨损模型二次开发的ANSYS程序来计算磨损,其中运用节点位移的方法来描述磨损过程。结果表明:当间隙关节转速较低时,重力对于关节轴承的磨损分布和磨损程度的影响很大,轴承出现集中磨损现象,磨损间隙急剧增加,严重影响机构的性能和精度;随着关节转速升高,重力对间隙关节磨损的影响逐渐减弱,轴承的磨损分布、磨损程度和关节最大磨损间隙的增长率将逐渐与微重力环境下趋同。  相似文献   

17.
In order to verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks and that the facility science operations are not compromised, a testing and analytical verification process must be followed. Currently no facility racks have taken this process from start to finish. The authors are participants in implementing this process for the NASA Glenn Research Center (GRC) Fluids and Combustion Facility (FCF). To address the testing part of the verification process, the Microgravity Emissions Laboratory (MEL) was developed at GRC. The MEL is a 6 degree of freedom inertial measurement system capable of characterizing inertial response forces (emissions) of components, sub-rack payloads, or rack-level payloads down to 10(-7) g's. The inertial force output data, generated from the steady state or transient operations of the test articles, are utilized in analytical simulations to predict the on-orbit vibratory environment at specific science or rack interface locations. Once the facility payload rack and disturbers are properly modeled an assessment can be made as to whether required microgravity levels are achieved. The modeling is utilized to develop microgravity predictions which lead to the development of microgravity sensitive ISS experiment operations once on-orbit. The on-orbit measurements will be verified by use of the NASA GRC Space Acceleration Measurement System (SAMS). The major topics to be addressed in this paper are: (1) Microgravity Requirements, (2) Microgravity Disturbers, (3) MEL Testing, (4) Disturbance Control, (5) Microgravity Control Process, and (6) On-Orbit Predictions and Verification.  相似文献   

18.
A primary objective of the International Space Station is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. Since continuous human presence on the space station began in November 2000 through the end of Increment-6, over 1260 hours of crew time have been allocated to research. However, far more research time has been accumulated by experiments controlled on the ground. By the end of the time period covered by this paper (end of Increment-6), the total experiment hours performed on the station are well over 100,000 hours (Expedition 6 Press Kit: Station Begins Third Year of Human Occupation, Boeing/USA/NASA, October 25, 2002). This paper presents the results of the on-going effort by the Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, to characterize the microgravity environment of the International Space Station in order to keep the microgravity scientific community apprised of the reduced gravity environment provided by the station for the performance of space experiments. This paper focuses on the station microgravity environment for Increments 5 and 6. During that period over 580 Gbytes of acceleration data were collected, out of which over 34,790 hours were analyzed. The results presented in this paper are divided into two sections: quasi-steady and vibratory. For the quasi-steady analysis, over 7794 hours of acceleration data were analyzed, while over 27,000 hours were analyzed for the vibratory analysis. The results of the data analysis are presented in this paper in the form of a grand summary for the period under consideration. For the quasi-steady acceleration response, results are presented in the form of a 95% confidence interval for the station during "normal microgravity mode operations" for the following three attitudes: local vertical local horizontal, X-axis perpendicular to the orbit plane and the Russian torque equilibrium attitude. The same analysis was performed for the station during "non-microgravity mode operations" to assess the station quasi-steady acceleration environment over a long period of time. The same type of analysis was performed for the vibratory, but a 95th percentile benchmark was used, which shows the overall acceleration magnitude during Increments 5 and 6. The results, for both quasi-steady and vibratory acceleration response, show that the station is not yet meeting the microgravity requirements during the microgravity mode operations. However, it should be stressed that the requirements apply only at assembly complete, whereas the results presented below apply up to the station's configuration at the end of Increment-6.  相似文献   

19.
姜宇 《宇航学报》2020,41(7):889-900
对太阳系尘埃动力学所涉及到的基本内容进行概述,包括尘埃的种类、成分、尺寸、密度、形状和生命周期。介绍了近年来在尘埃的来源与生成机制方面的力学过程、主要理论、模型与方法,包括冲击溅射、表面喷射、风化、滑坡、质量脱落、旋转断裂等,阐述了尘埃的充电过程与磁场环境,简要概述了航天任务的尘埃探测结果,介绍了尘埃受力模型、单个尘埃颗粒的运动以及大量尘埃的分布特征、动力学现象及内在规律方面的最新研究结论。最后对太阳系尘埃动力学领域的未来发展趋势进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号