首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Pretzl  K. 《Space Science Reviews》2002,100(1-4):209-220
Weakly Interacting Massive Particles, so-called WIMPs, are possible candidates for the dark matter in the universe. We discuss the search for WIMPs with earth bound detectors. The latest results in this field of research and future developments are presented.  相似文献   

2.
Ellis  John  Ferstl  Andrew  Olive  Keith A. 《Space Science Reviews》2002,100(1-4):235-246
Direct and indirect dark matter detection relies on the scattering of the dark matter candidate on nucleons or nuclei. Here, attention is focused on dark matter candidates (neutralinos) predicted in the minimal supersymmetric standard model and its constrained version with universal input soft supersymmetry-breaking masses. Current expectations for elastic scattering cross sections for neutralinos on protons are discussed with particular attention to satisfying all current accelerator constraints as well as insuring a sufficient cosmological relic density to account for the dark matter in the universe.  相似文献   

3.
Evolution and composition of baryonic matter is influenced by the evolution of other forms of matter and energy in the universe. At the time of primordial nucleosynthesis the universal expansion and thus the decrease of the density and temperature of baryonic matter were controlled by leptons and photons. Non-baryonic dark matter initiated the formation of clusters and galaxies, and to this day, dark matter largely determines the dynamics and geometries of these baryonic structures and indirectly influences their chemical evolution. Chemical analyses and isotopic abundance measurements in the solar system established the composition in the protosolar cloud (PSC). The abundances of nuclear species in the PSC led to the discovery of the magic numbers and the nuclear shell model, and they allowed the identification of nucleosynthetic sites and processes. To this day, we know the abundances of the ∼300 stable and long-lived nuclides infinitely better in the PSC than in any other sample of matter in the universe. Thus, we know the exact composition of a Galactic sample of intermediate age, allowing us to check on theories of Galactic evolution before and after the formation of the solar system. This paper specifically discusses the nucleosynthesis in the early universe and the Galactic evolution during the last 5 Gyr.  相似文献   

4.
Clusters of galaxies are self-gravitating systems of mass ∼1014–1015 h −1 M and size ∼1–3h −1 Mpc. Their mass budget consists of dark matter (∼80%, on average), hot diffuse intracluster plasma (≲20%) and a small fraction of stars, dust, and cold gas, mostly locked in galaxies. In most clusters, scaling relations between their properties, like mass, galaxy velocity dispersion, X-ray luminosity and temperature, testify that the cluster components are in approximate dynamical equilibrium within the cluster gravitational potential well. However, spatially inhomogeneous thermal and non-thermal emission of the intracluster medium (ICM), observed in some clusters in the X-ray and radio bands, and the kinematic and morphological segregation of galaxies are a signature of non-gravitational processes, ongoing cluster merging and interactions. Both the fraction of clusters with these features, and the correlation between the dynamical and morphological properties of irregular clusters and the surrounding large-scale structure increase with redshift. In the current bottom-up scenario for the formation of cosmic structure, where tiny fluctuations of the otherwise homogeneous primordial density field are amplified by gravity, clusters are the most massive nodes of the filamentary large-scale structure of the cosmic web and form by anisotropic and episodic accretion of mass, in agreement with most of the observational evidence. In this model of the universe dominated by cold dark matter, at the present time most baryons are expected to be in a diffuse component rather than in stars and galaxies; moreover, ∼50% of this diffuse component has temperature ∼0.01–1 keV and permeates the filamentary distribution of the dark matter. The temperature of this Warm-Hot Intergalactic Medium (WHIM) increases with the local density and its search in the outer regions of clusters and lower density regions has been the quest of much recent observational effort. Over the last thirty years, an impressive coherent picture of the formation and evolution of cosmic structures has emerged from the intense interplay between observations, theory and numerical experiments. Future efforts will continue to test whether this picture keeps being valid, needs corrections or suffers dramatic failures in its predictive power.  相似文献   

5.
The Warm-Hot Intergalactic Medium (WHIM) is thought to contribute about 40–50% to the baryonic budget at the present evolution stage of the universe. The observed large scale structure is likely to be due to gravitational growth of density fluctuations in the post-inflation era. The evolving cosmic web is governed by non-linear gravitational growth of the initially weak density fluctuations in the dark energy dominated cosmology. Non-linear structure formation, accretion and merging processes, star forming and AGN activity produce gas shocks in the WHIM. Shock waves are converting a fraction of the gravitation power to thermal and non-thermal emission of baryonic/leptonic matter. They provide the most likely way to power the luminous matter in the WHIM. The plasma shocks in the WHIM are expected to be collisionless. Collisionless shocks produce a highly non-equilibrium state with anisotropic temperatures and a large differences in ion and electron temperatures. We discuss the ion and electron heating by the collisionless shocks and then review the plasma processes responsible for the Coulomb equilibration and collisional ionisation equilibrium of oxygen ions in the WHIM. MHD-turbulence produced by the strong collisionless shocks could provide a sizeable non-thermal contribution to the observed Doppler parameter of the UV line spectra of the WHIM.  相似文献   

6.
Jetzer  Ph. 《Space Science Reviews》2002,100(1-4):117-127
The nature of the dark matter in the halo of our galaxy is still largely unknown. The microlensing events found so far towards the Large Magellanic Cloud suggest that at most about 20% of the halo dark matter is in form of MACHOs (Massive Astrophysical Compact Halo Objects). The dark matter could also, at least partially, be made of cold molecular clouds (mainly H2). We proposed a model for baryonic dark matter, according to which dark clusters of brown dwarfs and cold self-gravitating H2 clouds populate the outer galactic halo. A signature would be a diffuse -ray emission from the galactic halo. Basically, cosmic-ray protons in the galactic halo scatter on the clouds clumped into dark clusters, giving rise to a -ray flux. An analysis of EGRET data has led to the discovery of a statistically significant diffuse -ray emission from the galactic halo, which turns out to be in remarkably good agreement with our prediction.  相似文献   

7.
In this paper we present the new chemical-spectro-photometric models of population synthesis by Bressan, Chiosi & Fagotto (1993). The models are specifically designed for elliptical galaxies. They include the presence of dark matter and galactic winds triggered by the energy deposit from supernovae and winds of massive stars. The models are aimed at studying the UV-excess and its dependence on the metallicity, the color-magnitude relation, and the color evolution as a function of the redshift. It is shown that in order to explain the color-magnitude relation as a result of galactic winds, the energy input from massive stars is required. Supernovae alone cannot provide sufficient energy to start galactic wind before the metallicity and hence colors have got saturated. We show that the main source of the UV-excess are the old, hot HB and AGB manque stars of high metallicity present in varying percentages in the stellar content of a galaxy. Since in our model the mean and maximum metallicity are ultimately driven by the mass of the galaxy, this provides a natural explanation for the observed correlation between UV-excess and metallicity. Finally, looking at the color evolution as function of the redshift, we suggest that a sudden change occurring in the color (1550-V) at the onset of the old, hot HB and AGB manque stars of high metallicity, is a good age indicator. The detection of this feature at a certain redshift would impose firm constraints on the underlying cosmological model of the universe.  相似文献   

8.
A non-technical discussion is given of the energy density E of the extra-galactic background light. The fact that E is small means that the space between galaxies is dark, which is a modern version of a classical problem in astronomy known as Olbers' paradox. It is seen that the order of magnitude of E is fixed by the order of magnitude of the lifetime of the galaxies, as pointed out by Harrison; but that the expansion of the Universe can affect E by a smaller factor, typically about 2. These comments should help to end persistent confusion about the effects of the lifetime of the galaxies and the expansion of the Universe on the darkness of the night sky. It is hoped that Olbers' so-called paradox can now rest in peace.  相似文献   

9.
Ellis  John 《Space Science Reviews》2002,100(1-4):159-173
After recalling the motivations for expecting supersymmetry to appear at energies 1 TeV, the reasons why the lightest supersymmetric particle is an ideal candidate for cold dark matter are reviewed. Recent calculations of the relic density including coannihilations and rapid annihilations through direct-channel Higgs boson poles are presented. The experimental constraints from LEP and elsewhere on supersymmetric dark matter are reviewed. The potential implications of a Higgs boson weighing about 115 GeV and the recent measurement of the anomalous magnetic moment of the muon are summarized.  相似文献   

10.
Milsztajn  Alain 《Space Science Reviews》2002,100(1-4):103-115
The status of the microlensing search for galactic dark matter in the form of massive astronomical compact halo objects (machos) is reviewed. Unresolved issues are discussed, as well as possible ways to solve these.  相似文献   

11.
Galaxy clusters are ideal tracers of the large-scale structure and evolution of the universe. They are thus good probes for the matter content of the universe, the existence of dark matter, and for the statistics of the large-scale structure of the matter distribution. X-ray observations provide a very effective tool to characterize individual galaxy clusters as well as the cluster population. With the detailed analysis of X-ray observations of galaxy clusters the matter composition of clusters is obtained which can be taken as representative of the matter composition of the universe. Based on galaxy cluster surveys in X-rays a census of the galaxy cluster population and statistical measures of the spatial distribution of clusters is obtained. Comparison of the results with predictions from cosmological models yields interesting cosmological model constraints and in particular favours a low density universe.  相似文献   

12.
Axions     
Raffelt  Georg 《Space Science Reviews》2002,100(1-4):153-158
Axions are one of the few particle-physics candidates for dark matter which are well motivated independently of their possible cosmological role. A brief review is given of the theoretical motivation for axions, their possible role in cosmology, the existing astrophysical limits, and the status of experimental searches.  相似文献   

13.
Mellier  Y. 《Space Science Reviews》2002,100(1-4):73-87
Weak gravitational lensing probes the amount, location, distribution and the power spectrum of (dark) matter without assumption on the geometry and physical properties of gravitational structures. It is therefore widely recognized as potentially a promising tool to probe the matter content of the universe at all scales. Put into the perspective of this conference, the most illustrative new results concern clusters of galaxies and cosmic shear. In the following I focus on these two topics and discuss the present status of cosmological applications of weak lensing.  相似文献   

14.
The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.  相似文献   

15.
Astrophysical limitations do not exclude the possibility of some number of dark matter primordial Black Holes (BH) being seeded in the interiors of the Earth at the epoch of planet condensation in the young Solar System. We show that limitations on the neutrino radiation due to the BH quantum evaporation and accretion growth of BH mass completely forbid the existence of primordial BH of any mass in the Earth.  相似文献   

16.
Wetterich  C. 《Space Science Reviews》2002,100(1-4):195-206
Quintessence – the energy density of a slowly evolving scalar field – may constitute a dynamical form of the homogeneous dark energy in the universe. We review the basic idea and indicate observational tests which may distinguish quintessence from a cosmological constant.  相似文献   

17.
The James Webb Space Telescope   总被引:4,自引:0,他引:4  
The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m.The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations.To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.  相似文献   

18.
At least 6 extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all 6 formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50%, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.  相似文献   

19.
We review the implications of modern higher-dimensional theories of gravity for astrophysics and cosmology. In particular, we discuss the latest developments of STM theory in connection with dark matter, particle dynamics and the cosmological constant, as well as related aspects of quantum theory. There are also more immediate tests of extra dimensions, notably involving perturbations of the cosmic 3K microwave background and the precession of a supercooled gyroscope in Earth orbit. We also outline some general features of embeddings, and include pictures of the big bang as viewed from a higher dimension.  相似文献   

20.
The Multiband Imager (MI) is a high-resolution, multi-spectral imaging instrument for lunar exploration. It consists of two cameras, VIS and NIR, and is carried on the SELenological and ENgineering Explorer (SELENE), launched on Sep. 14, 2007. During the observation from January 2008 to June 2009, MI acquired about 450,000 scenes of multispectral image. The radiometric properties of the cameras were characterized using the pre-flight data derived in laboratory experiments with a calibrated integrating sphere. Twelve light source sets were used to examine the S/N ratio, linearity, and saturation level of the cameras. The dark field signal is quite stable in both cameras, having a noise level of less than 1 DN (VIS) and 2 DN (NIR). The fluctuation in the light field is also low (<2 DN), indicating that the spatial nonuniformity in the camera responses can be removed using a flat field. In order to remove the smear signals due to the frame transfer in the VIS data, we developed an iterate algorithm using all bands in the VIS camera. The S/N ratio, which is critical to the precision of the product, is estimated to exceed 160 for the VIS bands and 400 for the NIR bands under low illumination conditions (5% of lunar surface reflectance). Based on the S/N ratio, the radiometric error due to the noise is calculated to be less than 0.7% for VIS and 0.2% for NIR. The relationship between input and output of the VIS camera is linear with a residual of less than 0.6 DN, corresponding to a radiometric error of 0.3%. The NIR exhibits a non-linear response to the input radiance. A cubic function best fits the pre-flight data with an average residual of 8 DN (corresponds to an error of 0.8%). Validation using in-flight data indicated that the instability of the dark output has not changed, but the level of dark output has slightly changed in the NIR bands (less than 6 DN). The pixel-to-pixel sensitivity variation in the orbit has been changed from that in the pre-flight experiment. The difference between the in-flight data and the pre-flight data ranges within ±2%. There is also a small (less than ±1%) but nonnegligible difference between in-flight data of different cycles in both the VIS and NIR bands, suggesting that the coefficient for spatial ununiformity correction needs to be calculated for each cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号