首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A primary scientific objective of the ROSAT mission is to perform the first all-sky survey with an imaging X-ray telescope leading to an improvement in sensitivity by several orders of magnitude compared with previous surveys. A large number of new sources (? 105) will be discovered and located with an accuracy of 1 arcmin or better. These will comprise almost all astronomical objects from nearby normal stars to distant quasistellar objects. After completion of the survey which will take half a year the instrument will be used for detailed observations of selected sources with respect to spatial structure, spectra and time variability. In this mode which will be open for guest observers ROSAT will provide substantial improvement over the imaging instruments of the Einstein observatory.The main ROSAT telescope consists of a fourfold nested mirror system with 83 cm aperture having three focal plane instruments. Two of them will be imaging proportional counters (0.1 – 2 keV) providing a field of view of 2°, an angular resolution of ≈ 30″ in the pointing mode and a spectral resolution ΔE/E ≈ 45% FWHM at 1 keV. The third focal instrument will be a high resolution imager (≈ 3″). The main ROSAT telescope will be complemented by a parallel looking Wide Field camera which extend the spectral coverage into the XUV band.  相似文献   

2.
The ROSAT mission, which is currently being prepared in W.-Germany, will perform the first soft X-ray all-sky survey by means of a large imaging X-ray telescope. Detailed calculations under the cost, volume and mass constraint of the satellite being a Shuttle payload have led to a design of the imaging optics with optimized geometry. The mirror system is of the Wolter type I configuration and includes four nested shells with a maximum aperture of 835 mm and a focal length of 2400 mm. The on-axis angular resolution of the mirror assembly has been specified to 5 arcsec with a scattering level as low as 3% for single reflection at 1.5 keV photon energy. Construction and technology studies have been completed by now and manufacturing of the first mirror shell has begun.  相似文献   

3.
We describe the Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) spacecraft. The instrument, which operates in the wavelength range 1150 – 3600 Å, has a spatial resolution of 2–3 arc sec and a spectral resolution of 0.02 Å FWHM in second order. A Gregorian telescope, focal length 1.8 m, feeds a 1 m Ebert-Fastie spectrometer. A polarimeter comprising rotating Mg F2 waveplates can be inserted behind the spectrometer entrance slit and allows all four Stokes parameters to be determined. The observing modes include rasters, spectral scans, velocity measurements, and polarimetry. Finally, we present examples of initial observations made since launch.  相似文献   

4.
Europe is one of the major partners building the International Space Station (ISS) and European industry, together with ESA, is responsible for many station components including the Columbus Orbital Facility, the Automated Transport Vehicle, two connecting modules and the European Robotic Arm. Together with this impressive list of contributions there is a strong desire within the ESA Member States to benefit from this investment by utilizing the unique capabilities of the ISS to perform world-class science. XEUS is one of the astronomical applications being studied by ESA to utilize the capabilities of the ISS. XEUS will be a long-term X-ray observatory with an initial mirror area of 6 m2 at 1 keV that will be expanded to 30 m2 following a visit to the ISS. The 1 keV spatial resolution is expected to be 2–5″ half-energy-width. XEUS will consist of separate detector and mirror spacecraft (MSC) aligned by active control to provide a focal length of 50 m. A new detector spacecraft, complete with the next generation of instruments, will also be added after visiting the ISS. The limiting 0.1–2.5 keV sensitivity will then be 4 × 10−18 erg cm−2 s−1, around 200 times better than XMM-Newton, allowing XEUS to study the properties of the hot baryons and dark matter at high redshift.  相似文献   

5.
Astrosat will be the first full-fledged Indian Astronomy mission aimed at multiwavelength studies in the optical, near- and far-UV and a broad X-ray spectral band covering 0.5–100 keV. This mission will have the capability of high time-resolution X-ray studies (10 μs timing), low and medium energy-resolution spectral studies and high angular-resolution (about 2″) imaging observations in the UV and optical bands simultaneously. This is realized by using a set of three co-aligned X-ray astronomy instruments and one UV imaging telescope consisting of two similar instruments. Detection and timing studies of X-ray transients and persisting sources will be done by a Scanning Sky X-ray Monitor. This mission will enable studies of different classes of galactic and extragalactic sources in the frontier area of high energy astronomy. Scientific objectives of the mission are highlighted in this paper. A brief summary of the design and characteristics of the X-ray and UV instruments and their expected sensitivities are presented.  相似文献   

6.
After more than two years of successful in-orbit operations, the γ-ray coded aperture SIGMA telescope has accumulated 800 hours of live-time observations of the Galactic Center region, including the remarkable hard source identified with the X-ray source 1E 1740.7–2942. The long-term behavior of the soft γ-ray emission of 1E 1740.7–2942, as determined from the SIGMA survey, supplemented with previously available soft γ-ray data, leads to its identification with a singular radio source, which consists of a double sided radio jet emanating from a compact variable core whose variability is correlated with that of the soft γ-ray source. The compact radio core, which lies well inside the improved soft γ-ray (40–150 keV) error circle (27″ radius) derived from the high-resolution SIGMA survey, is also inside the ROSAT and TTM error circle derived respectively in the soft and hard X-ray bands.  相似文献   

7.
For the future Japanese exploration mission of the Jupiter’s magnetosphere (JMO: Jupiter Magnetospheric Orbiter), a unique instrument named JUXTA (Jupiter X-ray Telescope Array) is being developed. It aims at the first in-situ measurement of X-ray emission associated with Jupiter and its neighborhood. Recent observations with Earth-orbiting satellites have revealed various X-ray emission from the Jupiter system. X-ray sources include Jupiter’s aurorae, disk emission, inner radiation belts, the Galilean satellites and the Io plasma torus. X-ray imaging spectroscopy can be a new probe to reveal rotationally driven activities, particle acceleration and Jupiter–satellite binary system. JUXTA is composed of an ultra-light weight X-ray telescope based on micromachining technology and a radiation-hard semiconductor pixel detector. It covers 0.3–2 keV with the energy resolution of <100 eV at 0.6 keV. Because of proximity to Jupiter (∼30 Jovian radii at periapsis), the image resolution of <5 arcmin and the on-axis effective area of >3 cm2 at 0.6 keV allow extremely high photon statistics and high resolution observations.  相似文献   

8.
X-ray telescopes have been providing high sensitivity X-ray observations in numerous missions. For X-ray telescopes in the future, one of the key technologies is to expand the energy band beyond 10 keV. We designed depth-graded multilayer, so-called supermirrors, for a hard X-ray telescope in the energy band up to 40 keV using lightweight thin-foil optics. They were successfully flown in a balloon flight and obtained a hard X-ray image of Cyg X-1 in the 20–40 keV band. Now supermirrors are promising to realize a hard X-ray telescope. We have estimated the performance of a hard X-ray telescope using a platinum–carbon supermirror for future satellite missions, such as NeXT (Japan) and XEUS (Europe). According to calculations, they will have a significant effective area up to 80 keV, and their effective areas will be more than 280 cm2 even at 60 keV. Limiting sensitivity will be down to 1.7 × 10−13 erg cm−2 s−1 in the 10–80 keV band at a 100 ks observation. In this paper, we present the results of the balloon experiment with the first supermirror flown and projected effective areas of hard X-ray telescopes and action items for future missions.  相似文献   

9.
We describe the “Monitor e Imageador de Raios-X” (MIRAX), an X-ray astronomy satellite mission proposed by the high-energy astrophysics group at the National Institute for Space Research (INPE) in Brazil to the Brazilian Space Agency. MIRAX is an international collaboration that includes, besides INPE, the University of California San Diego, the University of Tübingen in Germany, the Massachusetts Institute of Technology and the Space Research Organization Netherlands. The payload of MIRAX will consist of two identical hard X-ray cameras (10–200 keV) and one soft X-ray camera (2–28 keV), both with angular resolution of 5–7. The basic objective of MIRAX is to carry out continuous broadband imaging spectroscopy observations of a large source sample (9 months/yr) in the central Galactic plane region. This will allow the detection, localization, possible identification, and spectral/temporal study of the entire history of transient phenomena to be carried out in one single mission. MIRAX will have sensitivities of 5 mCrab/day in the 2–10 keV band (2 times better than the All Sky Monitor on Rossi X-ray Timing Explorer) and 2.6 mCrab/day in the 10–100 keV band (40 times better than the Earth Occultation technique of the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory). The MIRAX spacecraft will weigh about 200 kg and is expected to be launched in a low-altitude (600 km) circular equatorial orbit around 2007/2008.  相似文献   

10.
The LASCO-C1 telescope was designed to perform spectral analysis of coronal structures by means of a tunable Fabry–Pérot interferometer acquiring images at different wavelengths. Results from spectral scans of the Fe xiv 5303 Å green coronal emission line are presented. Physical quantities like the ion temperature (line widths), and the flow velocity along the line of sight (Doppler shifts) are obtained over the entire corona.  相似文献   

11.
A small number of early Be stars exhibit X-ray luminosities intermediate between those typical of early type stars and those radiated by Be/X-ray binaries in the quiescent state. We report on XMM-Newton observations of two such Be stars, HD 161103 and SAO 49725 which were originally discovered in a systematic cross-correlation between the ROSAT all-sky survey and SIMBAD. The new observations confirm the X-ray luminosity detected by ROSAT (LX  1032 erg s−1) and the hardness of their X-ray spectra (thin thermal with kT  8–10 keV or power law with photon index of 1.7) which are both unusual for normal early type stars. We discuss the possible origin of this excess X-ray emission in the light of the models proposed for γ-Cas, magnetic disc-star interaction or accretion onto a compact companion object, neutron star or white dwarf, and compare the properties of these two sources with those of the new massive systems discovered in the XMM- Newton/SSC survey of the Galactic plane.  相似文献   

12.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German Project to develop and operate a gyrostabilized 2.5-m telescope in a Boeing 747-SP. This observatory will allow astronomical observations from 0.3 μm to sub-millimeter wavelengths at stratospheric altitudes as high as 45,000 ft where the atmosphere is not only cloud-free, but largely transparent at infrared wavelengths. The dynamics and chemistry of interstellar matter, and the details of embedded star formation will be key science goals. In addition, SOFIA’s unique portability will enable large-telescope observations at sites required to observe transient phenomena and location specific events. SOFIA will offer the convenient accessibility of a ground-based telescope for servicing, maintenance, and regular technology upgrades, yet will also have many of the performance advantages of a space-based telescope. Initially, SOFIA will fly with nine first-generation focal plane instruments that include broad-band imagers, moderate resolution spectrographs that will resolve broad features from dust and large molecules, and high resolution spectrometers capable of studying the chemistry and detailed kinematics of molecular and atomic gas. First science flights will begin in 2010, leading to a full operations schedule of about 120 8–10 h flights per year by 2014. The next call for instrument development that can respond to scientifically exciting new technologies will be issued in 2010. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community with cutting edge focal plane technology. We summarize the operational characteristics of the first-generation instruments and give specific examples of the types of fundamental scientific studies these instruments are expected to make.  相似文献   

13.
New type of gamma-telescope with angular resolution about several seconds of arc and spectral resolution ΔE/E <0.1% is proposed. In this instrument a position sensitive detector is used together with random mask, crystal diffractor and stellar sensor. The scientific objectives and the possible ways to carry out the first experiment with this telescope are discussed.  相似文献   

14.
In this paper, the Hard X-ray Modulation Telescope mission is introduced. Its primary objective is to perform the hard X-ray all sky survey of high resolution and high sensitivity. The expected angular resolution and position accuracy of the satellite are better than 10 and 2, respectively. The preliminary mission design is analyzed. And a new attitude subsystem scheme is presented to meet the high precision demand of attitude determination. A conclusion is drawn that the mission design is feasible. The possible launch of it will significantly advance the astrophysical study.  相似文献   

15.
The HXMT mission concept consists of a slat-collimated hard X-ray detector assembly sensitive in 20~250 keV with a collection area of about 5000 cm2. Based on the reconstruction technique by direct demodulation developed in recent years, HXMT is mainly devoted to performing a hard X-ray all-sky imaging survey with both high sensitivity and high spatial resolution. It can also be used to make pointed observations of X-ray sources to study their spectroscopic and temporal properties in details. The main detector of HXMT consists of 18 individual cylindrical NaI(T1)/CsI(Na) phoswich modules, each with anarea of 283.5 cm2 and a field of view of 5.7°× 1.1° (FWHM). Its spatial resolution and position accuracy are 5′ and 1′ by using the direct demodulation in 1994, and in 2000 its feasibility and technical demonstration study was selected as a project under the Major State Basic Research Program of China. In October 2005, this project entered the full design phase and was listed as a candidate for the first dedicated astronomy satellite around 2010. We are now also considering secondary low energy instruments for this satellite.  相似文献   

16.
The ROSAT (Röntgensatellit) X-ray astronomy satellite has completed the first all-sky X-ray and XUV survey with imaging telescopes. About 60,000 new X-ray and 400 new XUV /1/ sources were detected. This contribution will deal with preliminary results from the ROSAT ALL-SKY X-RAY SURVEY. The ROSAT diffuse and point-source X-ray skymaps, the positional accuracy obtained for the X-ray sources, and a few results from correlations performed with available catalogues in various energy bands like the Radio, Infrared, Visible, UV, and hard X-rays as well as identifications from optical follow-up observations are presented.  相似文献   

17.
The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7 m diameter feeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102–310 nm spectral band is split to feed two echelle spectrographs covering the UV range 174–310 nm and the vacuum-UV range 102–176 nm with high spectral resolution (R > 50,000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering performance aspects, design drivers, related trade-offs (mechanical concepts, material selection etc.) and a critical functional and environmental test verification approach. The current state of other WSO/UV scientific instruments (imagers) is also described.  相似文献   

18.
Spectrally resolved X-ray images of galactic supernova remnants have been obtained both from the ROSAT all-sky survey and a number of pointed observations. There is substantial evidence for significant spatial variation in temperature, density and pressure across the older, thermal remnants like the Vela SNR, the Cygnus Loop and the North Polar Spur. Both the brightness distribution and the pressure variations observed point towards recently shocked interstellar clouds and filaments, which dominate the X-ray emission pattern. Across the Puppis-A SNR an arc-shaped absorption structure has been detected, which is demonstrated to be produced by cold gas located close to the shock front of the Vela SNR. Across IC443 a similar absorption pattern has been observed, which is created by a cold shell associated with a previously unknown, ROSAT discovered SNR, which lies in front of IC443. Finally, a statistically overview of the SNRs detected in the ROSAT all-sky survey is presented. About half of the catalogued radio remnants have been observed in the survey and another 90 sources have been found which are considered to be candidates of new SNRs.  相似文献   

19.
The temperature distribution of the hot plasma emission measure in a large but slowly developing flare has been investigated using the following data obtained from the INTERCOSMOS 4 satellite: (1) the X - ray spectra in the range 1.7 – 1.9 Å, (2) the hard X - ray fluxes in the range 10 – 40 keV. It has been found that all the data can be explained by a consistent thermal model of the emitting region.  相似文献   

20.
A new design of position sensitive spectroscopic proportional counter is described, for use in a balloon borne hard x-ray telescope. Initial position and spectral resolution data from a one-dimensional laboratory prototype are reported. With this device, the final telescope will have an angular resolution of better than 10 minutes of arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号