首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic field that can produce adverse space weather at Earth and other locations in the Heliosphere. Due to the intrinsic multiscale nature of features in coronagraph images, wavelet and multiscale image processing techniques are well suited to enhancing the visibility of CMEs and suppressing noise. However, wavelets are better suited to identifying point-like features, such as noise or background stars, than to enhancing the visibility of the curved form of a typical CME front. Higher order multiscale techniques, such as ridgelets and curvelets, were therefore explored to characterise the morphology (width, curvature) and kinematics (position, velocity, acceleration) of CMEs. Curvelets in particular were found to be well suited to characterising CME properties in a self-consistent manner. Curvelets are thus likely to be of benefit to autonomous monitoring of CME properties for space weather applications.  相似文献   

2.
CMEs are due to physical phenomena that drive both, eruptions and flares in active regions. Eruptions/CMEs must be driven from initially force-free current-carrying magnetic field. Twisted flux ropes, sigmoids, current lanes and pattern in photospheric current maps show a clear evidence of currents parallel to the magnetic field. Eruptions occur starting from equilibria which have reached some instability threshold. Revisiting several data sets of CME observations we identified different mechanisms leading to this unstable state from a force free field. Boundary motions related to magnetic flux emergence and shearing favor the increase of coronal currents leading to the large flares of November 2003. On the other hand, we demonstrated by numerical simulations that magnetic flux emergence is not a sufficient condition for eruptions. Filament eruptions are interpreted either by a torus instability for an event occurring during the minimum of solar activity either by the diffusion of the magnetic flux reducing the tension of the restraining arcade. We concluded that CME models (tether cutting, break out, loss of equilibrium models) are based on these basic mechanisms for the onset of CMEs.  相似文献   

3.
Solar filament eruptions play a crucial role in triggering coronal mass ejections (CMEs). More than 80% of eruptions lead to a CME. This correlation has been studied extensively during the past solar cycles and the last long solar minimum. The statistics made on events occurring during the rising phase of the new solar cycle 24 is in agreement with this finding. Both filaments and CMEs have been related to twisted magnetic fields. Therefore, nearly all the MHD CME models include a twisted flux tube, called a flux rope. Either the flux rope is present long before the eruption, or it is built up by reconnection of a sheared arcade from the beginning of the eruption.  相似文献   

4.
We present a statistical study of post-flare-associated CMEs (PFA-CMEs) during the period from 1996 to 2010. By investigating all CMEs and X-ray flares, respectively, in the LASCO and GOES archives, we found 15875 CMEs of which masses are well measured and 25112 X-ray flares of which positions are determined from their optical counterparts. Under certain temporal and spatial criteria of these CMEs and solar flare events, 291PFA-CMEs events have been selected. Linking the flare fluxes with CME speeds of these paired events, we found that there is a reasonable positive linear relation between the CME linear speed and associated flare flux. The results show also the CME width increases as the flux of its associated solar flare increases. Besides we found that there is a fine positive linear relation between the CME mass and its width. Matching the flare fluxes with CME masses of these paired events, we find the CME mass increases as the flux of its associated solar flare increases. Finally we find the PFA-CME events are in regular more decelerated than the other CMEs.  相似文献   

5.
In this work, we present a study of the coronal mass ejection (CME) dynamics using LASCO coronagraph observations combined with in-situ ACE plasma and magnetic field data, covering a continuous period of time from January 1997 to April 2001, complemented by few extreme events observed in 2001 and 2003. We show, for the first time, that the CME expansion speed correlates very well with the travel time to 1 AU of the interplanetary ejecta (or ICMEs) associated with the CMEs, as well as with their preceding shocks. The events analyzed in this work are a subset of the events studied in Schwenn et al. (2005), from which only the CMEs associated with interplanetary ejecta (ICMEs) were selected. Three models to predict CME travel time to Earth, two proposed by Gopalswamy et al. (2001) and one by Schwenn et al. (2005), were used to characterize the dynamical behavior of this set of events. Extreme events occurred in 2001 and 2003 were used to test the prediction capability of the models regarding CMEs with very high LASCO C3 speeds.  相似文献   

6.
Statistical relationship between major flares and the associated CMEs during rising phases of Solar Cycles 23 and 24 are studied. Totally more than 6000 and 10,000 CMEs were observed by SOHO/LASCO (Solar and Heliospheric Observatory/Large Angle Spectrometric Coronagraph) during 23rd [May 1996–June 2002] and 24th [December 2008–December 2014] solar cycles, respectively. In particular, we studied the relationship between properties of flares and CMEs using the limb events (longitude 70–85°) to avoid projection effects of CMEs and partial occultation of flares that occurred near 90°. After selecting a sample of limb flares, we used certain spatial and temporal constraints to find the flare-CME pairs. Using these constraints, we compiled 129 events in Solar Cycle 23 and 92 events in Solar Cycle 24. We compared the flare-CME relationship in the two solar cycles and no significant differences are found between the two cycles. We only found out that the CME mean width was slightly larger and the CME mean acceleration was slightly higher in cycle 24, and that there was somewhat a better relation between flare flux and CME deceleration in cycle 24 than in cycle 23.  相似文献   

7.
With the advent of the NASA STEREO mission, we are in a position to perform unique investigations of the evolution of coronal mass ejections (CMEs) as they propagate through the heliosphere, and thus can investigate the relationship between CMEs and their interplanetary counterparts, so-called interplanetary CMEs (ICMEs). ICME studies have been principally limited to single-point, in-situ observations; interpretation of the in-situ characteristics of ICMEs has been used to derive a range of ICME properties which we can now confirm or refute using the STEREO imaging data. This paper is a review of early STEREO CME observations and how they relate to our currently understanding of ICMEs based on in-situ observations. In that sense, it is a first glance at the applications of the new data-sets to this topic and provides pointers to more detailed analyses. We find good agreement with in-situ-based interpretations, but this in turn leads to an anomaly regarding the final stages of a CME event that we investigate briefly to identify directions for future study.  相似文献   

8.
Estimating the magnetic storm effectiveness of solar and associated interplanetary phenomena is of practical importance for space weather modelling and prediction. This article presents results of a qualitative and quantitative analysis of the probable causes of geomagnetic storms during the 11-year period of solar cycle 23: 1996–2006. Potential solar causes of 229 magnetic storms (Dst ? −50 nT) were investigated with a particular focus on halo coronal mass ejections (CMEs). A 5-day time window prior to the storm onset was considered to track backward the Sun’s eruptions of halo CMEs using the SOHO/LASCO CMEs catalogue list. Solar and interplanetary (IP) properties associated with halo CMEs were investigated and correlated to the resulting geomagnetic storms (GMS). In addition, a comparative analysis between full and partial halo CME-driven storms is established. The results obtained show that about 83% of intense storms (Dst ? −100 nT) were associated with halo CMEs. For moderate storms (−100 nT < Dst ? −50 nT), only 54% had halo CME background, while the remaining 46% were assumed to be associated with corotating interaction regions (CIRs) or undetected frontside CMEs. It was observed in this study that intense storms were mostly associated with full halo CMEs, while partial halo CMEs were generally followed by moderate storms. This analysis indicates that up to 86% of intense storms were associated with interplanetary coronal mass ejections (ICMEs) at 1 AU, as compared to moderate storms with only 44% of ICME association. Many other quantitative results are presented in this paper, providing an estimate of solar and IP precursor properties of GMS within an average 11-year solar activity cycle. The results of this study constitute a key step towards improving space weather modelling and prediction.  相似文献   

9.
This work reports the investigation of two coronal mass ejections (CME) observed in white light, H, EUV and X-ray by various instruments both in space and on ground on February 18, 2003 and January 19, 2005, respectively. The white light coronal images show that the first CME began with the rarefaction of a region above the solar limb and was followed by the formation of its leading edge at the boundary of the rarefying region at altitude of 0.46 R from the solar surface. The rarefaction coincided the slow rising phase of the filament eruption, and the CME leading edge was observed to form as the filament eruption started to accelerate apparently. In the early stage of the second CME, a bright loop was first observed above the solar limb with height of 0.37 R in EUV images. We found that the more gradual CMEs initial process, the larger the timing difference between CMEs and their associated flares. The lower part of the filament brightened in H images as the filament rose to a certain height. These brightenings imply that the filament may be heated by magnetic reconnection below the filament in the early stage of the eruption. We suggest that the possible mechanism which led to the formation of the CME leading edge and cavity is magnetic reconnection which occurred under the filament when it reached a certain height.  相似文献   

10.
对澳大利亚Culgoora天文台射电频谱仪在太阳活动第23周峰年期间记录到的米波Ⅲ型爆发(20~420 MHz),与日冕物质抛射(CME)、Hα耀斑及相关事件进行了统计分析,发现米波Ⅲ型爆发与CME的关系没有Ⅱ、Ⅳ型爆发与CME的关系密切;米波Ⅲ型爆发发生的时间在CME之前25~30 min最多;72%的CME事件伴随长寿命的Hα耀斑.从这些观测特征出发,对米波Ⅲ型爆发、CME和Hα耀斑进行了定性的解释.   相似文献   

11.
Transients in the heliosphere, including coronal mass ejections (CMEs) and corotating interaction regions can be imaged to large heliocentric distances by heliospheric imagers (HIs), such as the HIs onboard STEREO and SMEI onboard Coriolis. These observations can be analyzed using different techniques to derive the CME speed and direction. In this paper, we use a three-dimensional (3-D) magneto-hydrodynamic (MHD) numerical simulation to investigate one of these methods, the fitting method of  and . Because we use a 3-D simulation, we can determine with great accuracy the CME initial speed, its speed at 1 AU and its average transit speed as well as its size and direction of propagation. We are able to compare the results of the fitting method with the values from the simulation for different viewing angles between the CME direction of propagation and the Sun-spacecraft line. We focus on one simulation of a wide (120–140°) CME, whose initial speed is about 800 km s−1. For this case, we find that the best-fit speed is in good agreement with the speed of the CME at 1 AU, and this, independently of the viewing angle. The fitted direction of propagation is not in good agreement with the viewing angle in the simulation, although smaller viewing angles result in smaller fitted directions. This is due to the extremely wide nature of the ejection. A new fitting method, proposed to take into account the CME width, results in better agreement between fitted and actual directions for directions close to the Sun–Earth line. For other directions, it gives results comparable to the fitting method of Sheeley et al. (1999). The CME deceleration has only a small effect on the fitted direction, resulting in fitted values about 1–4° higher than the actual values.  相似文献   

12.
The relation between coronal mass ejections (CMEs) and solar flares are statistically studied. More than 10,000 CME events observed by SOHO/LASCO during the period 1996–2005 have been analyzed. The soft X-ray flux measurements provided by the Geostationary Operational Environmental Satellite (GOES), recorded more than 20,000 flares in the same time period. The data is filtered under certain temporal and spatial conditions to select the CME–flare associated events. The results show that CME–flare associated events are triggered with a lift-off time within the range 0.4–1.0 h. We list a set of 41 CME–flare associated events satisfying the temporal and spatial conditions. The listed events show a good correlation between the CME energy and the X-ray flux of the CME–flare associated events with correlation coefficient of 0.76.  相似文献   

13.
It remains an open question how magnetic energy is rapidly released in the solar corona so as to create solar explosions such as solar flares and coronal mass ejections (CMEs). Recent studies have confirmed that a system consisting of a flux rope embedded in a background field exhibits a catastrophic behavior, and the energy threshold at the catastrophic point may exceed the associated open field energy. The accumulated free energy in the corona is abruptly released when the catastrophe takes place, and it probably serves as the main means of energy release for CMEs at least in the initial phase. Such a release proceeds via an ideal MHD process in contrast with nonideal ones such as magnetic reconnection. The catastrophe results in a sudden formation of electric current sheets, which naturally provide proper sites for fast magnetic reconnection. The reconnection may be identified with a solar flare associated with the CME on one hand, and produces a further acceleration of the CME on the other. On this basis, several preliminary suggestions are made for future observational investigations, especially with the proposed Kuafa satellites, on the roles of the MHD catastrophe and magnetic reconnection in the magnetic energy release associated with CMEs and flares.  相似文献   

14.
We study the 3-D kinematics of a Coronal Mass Ejection (CME) using data acquired by the LASCO C2 and UVCS instruments on board SOHO, and the COR1 coronagraphs and EUVI telescopes on board STEREO. The event, which occurred on May 20, 2007, was a partial-halo CME associated with a prominence eruption. This is the first CME studied with UVCS data that occurred in the STEREO era. The longitudinal angle between the STEREO spacecrafts was ∼7.7° at that time, and this allowed us to reconstruct via triangulation technique the 3-D trajectory of the erupting prominence observed by STEREO/EUVI. Information on the 3-D expansion of the CME provided by STEREO/COR1 data have been combined with spectroscopic observations by SOHO/UVCS. First results presented here show that line-of-sight velocities derived from spectroscopic data are not fully in agreement with those previously derived via triangulation technique, thus pointing out possible limitations of this technique.  相似文献   

15.
We studied a set of 74 CMEs, with shedding the light on the halo-CMEs (HCMEs), that are associated with decametric – hectometric (DH) type-II radio bursts (1–16?MHz) and solar flares during the period 2008–2014. The events were classified into 3 groups (disk, intermediate, and limb events) based on their longitudinal distribution.We found that the events are mostly distributed around 15.32° and 15.97° at the northern and southern solar hemispheres, respectively. We found that there is a clear dependence between the longitude and the CME’s width, speed, acceleration, mass, and kinetic energy. For the CMEs’ widths, most of the events were HCMEs (~62%), while the partial HCMEs comprised ~35% and the rest of events were CMEs with widths less than 120°. For the CMEs’ speeds, masses, and kinetic energies, the mean values showed a direct proportionality with the longitude, in which the limb events had the highest speeds, the largest masses, and the highest kinetic energies. The mean peak flux of the solar flares for different longitudes was comparable, but the disk flares were more energetic. The intermediate flares were considered as gradual flares since they tended to last longer, while the limb flares were considered as impulsive flares since they tended to last shorter.A weak correlation (R?=?0.32) between the kinetic energy of the CMEs and the duration of the associated flares has been noticed, while there was a good correlation (R?=?0.76) between the kinetic energy of the CMEs and the peak flux of the associated flares. We found a fair correlation (R?=?0.58) between the kinetic energy of the CMEs and the duration of the associated DH type-II radio bursts.  相似文献   

16.
Coronal mass ejections (CMEs), which are among the most magnificent solar eruptions, are a major driver of space weather and can thus affect diverse human technologies. Different processes have been proposed to explain the initiation and release of CMEs from solar active regions (ARs), without reaching consensus on which is the predominant scenario, and thus rendering impossible to accurately predict when a CME is going to erupt from a given AR. To investigate AR magnetic properties that favor CMEs production, we employ multi-spacecraft data to analyze a long duration AR (NOAA 11089, 11100, 11106, 11112 and 11121) throughout its complete lifetime, spanning five Carrington rotations from July to November 2010. We use data from the Solar Dynamics Observatory to study the evolution of the AR magnetic properties during the five near-side passages, and a proxy to follow the magnetic flux changes when no magnetograms are available, i.e. during far-side transits. The ejectivity is studied by characterizing the angular widths, speeds and masses of 108 CMEs that we associated to the AR, when examining a 124-day period. Such an ejectivity tracking was possible thanks to the multi-viewpoint images provided by the Solar-Terrestrial Relations Observatory and Solar and Heliospheric Observatory in a quasi-quadrature configuration. We also inspected the X-ray flares registered by the GOES satellite and found 162 to be associated to the AR under study. Given the substantial number of ejections studied, we use a statistical approach instead of a single-event analysis. We found three well defined periods of very high CMEs activity and two periods with no mass ejections that are preceded or accompanied by characteristic changes in the AR magnetic flux, free magnetic energy and/or presence of electric currents. Our large sample of CMEs and long term study of a single AR, provide further evidence relating AR magnetic activity to CME and Flare production.  相似文献   

17.
We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996–1998) (22 events) and 24 (2009–2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity < 1 pfu), minor (1 pfu < intensity < 10 pfu) and major (intensity ? 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north–south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.  相似文献   

18.
19.
Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad–Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME–MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near-Earth environment.  相似文献   

20.
Ten years after the first observation of large-scale wave-like coronal disturbances with the EIT instrument aboard SOHO, the most crucial questions concerning these “EIT waves” are still being debated controversially – what is their actual physical nature, and how are they launched? Possible explanations include MHD waves or shocks, launched by flares or driven by coronal mass ejections (CMEs), as well as models where coronal waves are not actually waves at all, but generated by successive “activation” of magnetic fieldlines in the framework of a CME. Here, we discuss recent observations that might help to discriminate between the different models. We focus on strong coronal wave events that do show chromospheric Moreton wave signatures. It is stressed that multiwavelength observations with high time cadence are particularly important, ideally when limb events with CME observations in the low corona are available. Such observations allow for a detailed comparison of the kinematics of the wave, the CME and the associated type II radio burst. For Moreton-associated coronal waves, we find strong evidence for the wave/shock scenario. Furthermore, we argue that EIT waves are actually generated by more than one physical process, which might explain some of the issues which have made the interpretation of these phenomena so controversial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号