首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 391 毫秒
1.
Ionosphere delay is very important to GNSS observations, since it is one of the main error sources which have to be mitigated even eliminated in order to determine reliable and precise positions. The ionosphere is a dispersive medium to radio signal, so the value of the group delay or phase advance of GNSS radio signal depends on the signal frequency. Ground-based GNSS stations have been used for ionosphere monitoring and modeling for a long time. In this paper we will introduce a novel approach suitable for single-receiver operation based on the precise point positioning (PPP) technique. One of the main characteristic is that only carrier-phase observations are used to avoid particular effects of pseudorange observations. The technique consists of introducing ionosphere ambiguity parameters obtained from PPP filter into the geometry-free combination of observations to estimate ionospheric delays. Observational data from stations that are capable of tracking the GPS/BDS/GALILEO from the International GNSS Service (IGS) Multi-GNSS Experiments (MGEX) network are processed. For the purpose of performance validation, ionospheric delays series derived from the novel approach are compared with the global ionospheric map (GIM) from Ionospheric Associate Analysis Centers (IAACs). The results are encouraging and offer potential solutions to the near real-time ionosphere monitoring.  相似文献   

2.
电离层延迟误差是全球导航卫星系统(global navigation satellite system,GNSS)中的重要误差源之一。目前在电离层延迟改正模型中,应用最广泛的是Klobuchar参数模型,但是该模型的改正率仅能达到60%左右,无法满足日益增长的精度需求。将国际GNSS监测评估系统(international GNSS monitoring & assessment system,iGMAS)发布的高精度电离层格网数据作为对照,对Klobuchar电离层模型误差进行计算和分析,结果发现在中纬度区域误差存在明显的周期性特征。为进一步提高Klobuchar电离层模型在中纬度区域的改正精度,建立了基于粒子群优化反向传播(back propagation,BP)神经网络的Klobuchar电离层误差预测模型,并以2019年10月的采样数据为例进行误差预测。结果表明,用该模型对中纬度区域电离层延迟提供误差补偿,可将精度提高到90%左右。  相似文献   

3.
We introduce a new global ionospheric modeling software—IonoGim, using ground-based GNSS data, the altimetry satellite and LEO (Low Earth Orbit) occultation data to establish the global ionospheric model. The software is programmed by C++ with fast computing speed and highly automatic degree, it is especially suitable for automatic ionosphere modeling. The global ionospheric model and DCBs obtained from IonoGim were compared with the CODE (Center for Orbit Determination in Europe) to verify its accuracy and reliability. The results show that IonoGim and CODE have good agreement with small difference, indicating that IonoGim owns high accuracy and reliability, and can be fully applicable for high-precision ionospheric research. In addition, through comparison between only using ground-based GNSS observations and multi-source data model, it can be demonstrated that the space-based ionospheric data effectively improve the model precision in marine areas where the ground-based GNSS tracking station lacks.  相似文献   

4.
电离层时延误差是导航定位信号在空间传播路径上的主要误差源之一,因此全面了解GNSS电离层模型的改正精度具有一定现实意义.根据GPS,BDS和Galileo系统所采用的电离层修正模型,利用2014年电离层校正参数,以高精度全球电离层图为基准,评估分析了三大系统电离层时延的改正精度.结果表明:目前GNSS使用的几种电离层修正模型的改正率在65~75%左右;Galileo系统使用的第二版NeQuick模型与第一版NeQuick模型相比在修正精度上并无显著提高;GPS使用的Klobuchar 8参数模型在北半球25°-45°N的中纬度地区精度很高,但是在全球其他区域精度较低,分布性较差,而NeQuick模型全球改正率分布则较为平均且平滑.   相似文献   

5.
The ionospheric effect remains one of the main factors limiting the accuracy of Global Navigation Satellite Systems (GNSS) including Galileo. For single frequency users, this contribution to the error budget will be mitigated by an algorithm based on the NeQuick global ionospheric model. This quick-run empirical model provides flexible solutions for combining ionospheric information obtained from various sources, from GNSS to ionosondes and topside sounders. Hence it constitutes an interesting simulation tool not only serving Galileo needs for mitigation of the ionospheric effect but also widening the use of new data.  相似文献   

6.
We developed the methodology for the optimal estimation of global ionospheric coefficients of the current Global Navigation Satellite Systems (GNSSs), including the eight- and ten-parameter Klobuchar-like as well as NeQuick models. The ionospheric coefficients of those correction models are calculated from two sets of globally distributed tracking stations of the International GNSS Services (IGS). Performance of the re-estimated Klobuchar-like and NeQuick coefficients are validated during 2002–2014 over the continental and oceanic areas, respectively. Over the continental areas, GPS TECs derived from 40 ground GPS receivers are selected as reference. The eight-, ten-parameter Klobuchar-like and NeQuick models can mitigate the ionospheric delay by 65.8, 67.3 and 75.0%, respectively. Over the global oceans, the independent TECs derived from Jason-1&2 altimeters are used as reference. The re-estimated ionospheric correction models can mitigate 56.1–66.7% of the delay errors. Compared to the original GPS Ionospheric Correction Algorithm (ICA), performance of those eight-, ten-parameter Klobuchar-like and NeQuick models has improved 3.4, 5.9 and 13.4% during the whole test period, respectively. The methodology developed here takes the advantage of high-quality ionospheric TECs derived from the global network of GNSS receivers. The re-estimated ionospheric coefficients can be used as precise ionospheric products to monitor and assess GNSS broadcast ionospheric parameters and to improve the performance of various single-frequency GNSS applications.  相似文献   

7.
Given the severe effects of the ionosphere on global navigation satellite system (GNSS) signals, single-frequency (SF) precise point positioning (PPP) users can only achieve decimeter-level positioning results. Ionosphere-free combinations can eliminate the majority of ionospheric delay, but increase observation noise and slow down dual-frequency (DF) PPP convergence. In this paper, we develop a regional ionosphere modeling and rapid convergence approach to improve SF PPP (SFPPP) accuracy and accelerate DF PPP (DFPPP) convergence speed. Instead of area model, ionospheric delay is modeled for each satellite to be used as a priori correction. With the ionospheric, wide-lane uncalibrated phase delay (UPD) and residuals satellite DCBs product, the wide-lane observations for DF users change to be high-precision pseudorange observations. The validation of a continuously operating reference station (CORS) network was analyzed. The experimental results confirm that the approach considerably improves the accuracy of SFPPP. For DF users, convergence time is substantially reduced.  相似文献   

8.
Motivated by the IGS real-time Pilot Project, GFZ has been developing its own real-time precise positioning service for various applications. An operational system at GFZ is now broadcasting real-time orbits, clocks, global ionospheric model, uncalibrated phase delays and regional atmospheric corrections for standard PPP, PPP with ambiguity fixing, single-frequency PPP and regional augmented PPP. To avoid developing various algorithms for different applications, we proposed a uniform algorithm and implemented it into our real-time software. In the new processing scheme, we employed un-differenced raw observations with atmospheric delays as parameters, which are properly constrained by real-time derived global ionospheric model or regional atmospheric corrections and by the empirical characteristics of the atmospheric delay variation in time and space. The positioning performance in terms of convergence time and ambiguity fixing depends mainly on the quality of the received atmospheric information and the spatial and temporal constraints. The un-differenced raw observation model can not only integrate PPP and NRTK into a seamless positioning service, but also syncretize these two techniques into a unique model and algorithm. Furthermore, it is suitable for both dual-frequency and sing-frequency receivers. Based on the real-time data streams from IGS, EUREF and SAPOS reference networks, we can provide services of global precise point positioning (PPP) with 5–10 cm accuracy, PPP with ambiguity-fixing of 2–5 cm accuracy, PPP using single-frequency receiver with accuracy of better than 50 cm and PPP with regional augmentation for instantaneous ambiguity resolution of 1–3 cm accuracy. We adapted the system for current COMPASS to provide PPP service. COMPASS observations from a regional network of nine stations are used for precise orbit determination and clock estimation in simulated real-time mode, the orbit and clock products are applied for real-time precise point positioning. The simulated real-time PPP service confirms that real-time positioning services of accuracy at dm-level and even cm-level is achievable with COMPASS only.  相似文献   

9.
北斗卫星导航系统采用Klobuchar模型修正单频接收机用户的电离层延迟误差,由于此模型从亚洲地区应用角度考虑,在某一特定区域的修正精度甚至不足50%。为进一步提高区域电离层延迟修正精度,提出在原模型8个改正参数的基础上增加5个关键参数的Klobuchar改进模型,并采用松弛迭代与直线搜索法中的黄金分割相结合的算法对新增参数进行求解。以天津及其附近区域为例,利用GPStation6接收机采集到的实测数据对改进模型与原模型进行计算。将国际全球导航卫星系统服务组织(International GNSS Service,IGS)发布的全球电离层格网数据作为参考值,对比分析改进模型与原模型的修正精度。结果表明,区域Klobuchar改进模型在天津及其附近区域的电离层延迟平均修正精度比原模型提升了10.46%,平均修正精度达到77.51%。  相似文献   

10.
The extensive monitoring networks of Global Navigation Satellite System (GNSS) ionospheric scintillation have been established to continuously log observation data. Further, the amplitude scintillation index and the phase scintillation index, which are derived from scintillation observations, are anticipated to accommodate the accuracy requirement of both the user level and the monitoring station level. However, raw scintillation observations essentially measure superposed waveform impairments of GNSS signals propagating through ionosphere and troposphere. It implies that fluctuations of raw scintillation observations are caused by multiple factors from the entire radio propagation environment. Hence, it is crucial to characterize ionospheric scintillations from GNSS observation data. And the characterization is implemented through extracting fluctuations of raw observations merely induced by ionospheric scintillations. Designed to address this problem by means of Fourier filtering detrending, the present work investigates the influence of varying detrending cutoff frequencies on wavelet statistical energy and wavelet entropy distributions of scintillation data. It consequently derives criteria on the optimum detrending cutoff frequency for three types of raw amplitude scintillation data, which are classified by their wavelet energy distributions. Results of the present work verify that detrending with specific optimum cutoff frequencies rather than the fixed and universally applicable one renders the validity and credibility of characterizing ionospheric scintillations as the part of GNSS observation fluctuations purely induced by ionosphere electron density irregularities whose scale sizes are comparable with or smaller than the Fresnel scale.  相似文献   

11.
基于NTCM-BC模型的全球卫星导航系统单频电离层延迟修正   总被引:1,自引:0,他引:1  
选择NTCM-BC模型作为单频电离层延迟修正模型,通过非线性最小二乘拟合的方法,利用提前一天预测的电离层图(COPG文件),计算得到NTCM-BC模型修正系数;利用Klobuchar模型和IGS发布的GIM数据对NTCM-BC模型进行比较和分析.对太阳活动高、中、低年实测数据的分析结果表明:全球平均水平上,NTCM-BC模型的电离层延迟修正性能明显优于Klobuchar模型,NTCM-BC模型的TEC平均误差和均方根误差比Klobuchar模型分别下降了41%和30%;模型的TEC计算误差与太阳活动剧烈程度成正相关,即太阳活动高年模型误差较大,太阳活动低年误差相对较低.相较于磁静日,磁扰日期间Klobuchar模型和NCTM模型的误差均有一定程度的增加.此外,模型的电离层修正误差同时存在明显的纬度、季节和地方时差异.   相似文献   

12.
The global positioning system radio occultation (GPS RO) technique provides a powerful tool for atmospheric sounding which requires no calibration, is not affected by clouds, aerosols or precipitation, and provides an almost uniform global coverage. The paper deals with application of GPS RO measurements from CHAllenging Minisatellite Payload (CHAMP) for the retrieval of tropospheric water vapor profiles. CHAMP RO data are available since 2001 with up to 200 high resolution atmospheric profiles per day. We introduce a new direct method for water vapor retrieval from GPS RO data. Additionally, a 1Dvar algorithm is used for this purpose. The so derived CHAMP water vapor profiles are validated with radiosonde data on a global scale. Here, both methods come to statistically comparable results revealing a negative bias of less than 0.1 g/kg and a standard deviation of less than 1 g/kg specific humidity in the mid troposphere. Potentials of CHAMP RO retrievals for monitoring the mean tropospheric water vapor distribution on a global scale are presented.  相似文献   

13.
Research on empirical or physical models of ionospheric parameters is one of the important topics in the field of space weather and communication support services. To improve the accuracy of predicting the monthly median ionospheric propagating factor at 3000 km of the F2 layer (identified as M(3000)F2) for high frequency radio wave propagation, a model based on modified orthogonal temporal–spatial functions is proposed. The proposed model has three new characteristics: (1) The solar activity parameters of sunspot number and the 10.7-cm solar radio flux are together introduced into temporal reconstruction. (2) Both the geomagnetic dip and its modified value are chosen as features of the geographical spatial variation for spatial reconstruction. (3) A series of harmonic functions are used to represent the M(3000)F2, which reflects seasonal and solar cycle variations. The proposed model is established by combining nonlinear regression for three characteristics with harmonic analysis by using vertical sounding data over East Asia. Statistical results reveal that M(3000)F2 calculated by the proposed model is consistent with the trend of the monthly median observations. The proposed model is better than the International Reference Ionosphere (IRI) model by comparison between predictions and observations of six station, which illustrates that the proposed model outperforms the IRI model over East Asia. The proposed method can be further expanded for potentially providing more accurate predictions for other ionospheric parameters on the global scale.  相似文献   

14.
Evaluation of COMPASS ionospheric model in GNSS positioning   总被引:1,自引:0,他引:1  
As important products of GNSS navigation message, ionospheric delay model parameters are broadcasted for single-frequency users to improve their positioning accuracy. GPS provides daily Klobuchar ionospheric model parameters based on geomagnetic reference frame, while the regional satellite navigation system of China’s COMPASS broadcasts an eight-parameter ionospheric model, COMPASS Ionospheric Model(CIM), which was generated by processing data from continuous monitoring stations, with updating the parameters every 2 h. To evaluate its performance, CIM predictions are compared to ionospheric delay measurements, along with GPS positioning accuracy comparisons. Real observed data analysis indicates that CIM provides higher correction precision in middle-latitude regions, but relatively lower correction precision for low-latitude regions where the ionosphere has much higher variability. CIM errors for some users show a common bias for in-coming COMPASS signals from different satellites, and hence ionospheric model errors are somehow translated into the receivers’ clock error estimation. In addition, the CIM from the China regional monitoring network are further evaluated for global ionospheric corrections. Results show that in the Northern Hemisphere areas including Asia, Europe and North America, the three-dimensional positioning accuracy using the CIM for ionospheric delay corrections is improved by 7.8%–35.3% when compared to GPS single-frequency positioning ionospheric delay corrections using the Klobuchar model. However, the positioning accuracy in the Southern Hemisphere is degraded due apparently to the lack of monitoring stations there.  相似文献   

15.
针对如何利用GNSS(Global Navigation Satellite System)数据进行电离层扰动监测的问题,提出了一种基于GNSS数据表征全球电离层扰动的方法.利用大约400个GNSS地面站点的观测数据,计算总电子含量(Total Electron Content,TEC)变化率的标准差——ROTI(Ra...  相似文献   

16.
GNSS (Global Navigation Satellite System) radio occultation mission for remote sensing of the Earth’s atmosphere will be performed by GNOS (GNSS Occultation Sounder) instrument on China FengYun-3 (FY3) 02 series satellites, the first of which FY3-C will be launched in the year 2013. This paper describes the FY3 GNOS mission and presents some results of measurement simulation. The key designed specifications of GNOS are also shown. The main objective of simulation is to provide scientific support for GNOS occultation mission on the FY3-C satellites. We used EGOPS software to simulate occultation measurements according to GNOS designed parameters. We analyzed the accuracy of retrieval profiles based on two typical occultation events occurring in China South–East area among total simulated events. Comparisons between the retrieval atmospheric profiles and background profiles show that GNOS occultation has high accuracy in the troposphere and lower stratosphere. The sensitivities of refractivity to three types of instrumental error, i.e. Doppler biases, clock stability and local multipath, were analyzed. The results indicated that the Doppler biases introduced by along-ray velocity error and GNOS clock error were the primary error sources for FY3-C occultation mission.  相似文献   

17.
电离层延迟是全球卫星导航系统(GNSS)的主要误差源之一。对于装配GNSS单频接收机的航空器,选择简单有效的Klobuchar广播电离层模型来改正电离层延迟误差,其修正率为50%~60%。针对45°(N)纬度带,提出了更高电离层修正需求。考虑到季节因素对中高纬度地区电离层的显著影响,利用GIMs(Global Ionospheric Maps)分析了昼夜中TEC(Total Electron Content)的峰值和谷值随季节(年积日)的变化,建立了一种适用于45°(N)纬度带的Klobuchar like电离层模型。该模型不增加广播模型系数,新模型的夜间和VTEC高峰时电离层修正率分别达到了82%和80%,表明在穿刺点集中的45°(N)纬度地区使用该模型可以更精确地描述该地区的电离层,帮助航空器实现更高精度的定位。  相似文献   

18.
利用合成孔径原理和大气折射理论推导了大气层给SAR方位向分辨率带来的误差公式,针对不同时间、地点、高低年的电离层电子浓度和低层大气折射率剖面,对不同频段进行了计算,并对计算结果进行了分析讨论.得出了大气层中星载SAR的方位向分辨率误差为毫米量级,其绝对值随频率增高而减小的结论.   相似文献   

19.
The quasi-biennial oscillation, QBO, a well known periodicity in the equatorial stratospheric zonal winds, is also found in ionospheric parameters and in solar and geomagnetic activity indices. Many authors speculated about the link between the QBO in solar and geomagnetic activity and the QBO in atmospheric parameters. In this work we analyze the presence of the QBO in the ionosphere using the Vertical Total Electron Content (VTEC) values obtained from Global Navigation Satellite System (GNSS) measurements during the period 1999–2012. In particular, we used IONEX files, i.e. the International GNSS Service (IGS) ionospheric products. IONEX provide VTEC values around the world at 2-h intervals. From these data we compute global and zonal averages of VTEC at different local times at mid and equatorial geomagnetic latitudes. VTEC and Extreme Ultra Violet (EUV) solar flux time series are analyzed using a wavelet multi resolution analysis. In all cases the QBO is detected among other expected periodicities.  相似文献   

20.
PPP (Precise Point Positioning) is a GNSS (Global Navigation Satellite Systems) positioning method that requires SSR (State Space Representation) corrections in order to provide solutions with an accuracy of centimetric level. The so-called RT-PPP (Real-time PPP) is possible thanks to real-time precise SSR products, for orbits and clocks, provided by IGS (International GNSS Service) and its associate analysis centers such as CNES (Centre National d'Etudes Spatiales). CNES SSR products also enable RT-PPP with integer ambiguity resolution. In GNSS related literature, PPP with ambiguity resolution (PPP-AR) in real-time is often referred as PPP-RTK (PPP – Real Time Kinematic). PPP-WIZARD (PPP - With Integer and Zero-difference Ambiguity Resolution Demonstrator) is a software that is made available by CNES. This software is capable of performing PPP-RTK. It estimates slant ionospheric delays and other GNSS positioning parameters. Since ionospheric effects are spatially correlated by GNSS data from active networks, it is possible to model and provide ionospheric delays for any position in the network coverage area. The prior knowledge ionospheric delays can reduce positioning convergence for PPP-RTK users. Real-time ionospheric models could benefit from highly precise ionospheric delays estimated in PPP-AR. In this study, we demonstrate that ionospheric delays obtained throughout PPP-AR estimation are actu ally ionospheric observables. Ionospheric observables are biased by an order of few meters caused by the receiver hardware biases. These biases prohibit the use of PPP-WIZARD ionospheric delays to produce ionospheric models. Receiver biases correction is essential to provide ionospheric delays while using PPP-AR based ionospheric observables. In this contribution, a method was implemented to estimate and mitigate receiver hardware biases influence on slant ionospheric observables from PPP-AR. In order to assess the proposed approach, PPP-AR data from 12 GNSS stations were processed over a two-month period (March and April 2018). A comparison between IGS ionospheric products and PPP-AR based ionospheric observables corrected for receiver biases, resulted in a mean of differences of −39 cm and 51 cm standard deviation. The results are consistent with the accuracy of the IGS ionospheric products, 2–8 TECU, considering that 1 TECU is ~16 cm in L1. In another analysis, a comparison of ionospheric delays from 5 pairs of short baselines GNSS stations found an agreement of 0.001 m in mean differences with 22 cm standard deviation after receiver biases were corrected. Therefore, the proposed solution is promising and could produce high quality (1–2 TECU) slant ionospheric delays. This product can be used in a large variety of modeling approaches, since ionospheric delays after correction are unbiased. These results indicate that the proposed strategy is promising, and could benefit applications that require accuracy of 1–2 TECU (~16–32 cm in L1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号