首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In August 2005 NASA launched a large orbiting science observatory, the Mars Reconnaissance Orbiter (MRO), for what is scheduled to be a 5.4-year mission. High resolution imaging of the surface is a principal goal of the mission. One consequence of this goal however is the need for a low science orbit. Unfortunately this orbit fails the required 20-year orbit life set in NASA Planetary Protection (PP) requirements [NASA. Planetary protection provisions for robotic extraterrestrial missions, NASA procedural requirements NPR 8020.12C, NASA HQ, Washington, DC, April 2005.]. So rather than sacrifice the science goals of the mission by raising the science orbit, the MRO Project chose to be the first orbiter to pursue the bio-burden reduction approach.  相似文献   

2.
It is well known that long-term exposure to microgravity causes a number of physiological and biochemical changes in humans; among the most significant are: 1) negative calcium balance resulting in the loss of bone; 2) atrophy of antigravity muscles; 3) fluid shifts and decreased plasma volume; and 4) cardiovascular deconditioning that leads to orthostatic intolerance. It is estimated that a mission to Mars may require up to 300 days in a microgravity environment; in the case of an aborted mission, the astronauts may have to remain in reduced gravity for up to three years. Although the Soviet Union has shown that exercise countermeasures appear to be adequate for exposures of up to one year in space, it is questionable whether astronauts could or should have to maintain such regimes for extremely prolonged missions. Therefore, the NASA Life Sciences Division has initiated a program designed to evaluate a number of methods for providing an artificial gravity environment.  相似文献   

3.
Over that past twelve years, global long duration balloon (LDB) missions have provided scientists an observation platform that offers tremendous opportunity for accomplishing monumental science. The precedence of several years of highly successful LDB missions and the capability to recover and re-fly such instruments within a relatively short period of time has created even greater demands for serving science missions in 2004 and beyond. To address NASA’s strategic plans for more missions and longer durations, new concepts are being explored and some are currently being developed, in order to enhance the current LDB mission concept.  相似文献   

4.
为实现我国首次月球样品无人采样返回任务,设计了嫦娥五号(Chang’E 5)探测器制导、导航与控制(GNC)系统.根据任务要求和探测器特点,GNC系统设计分为轨道器GNC子系统、返回器GNC子系统和着上组合体GNC子系统.给出了嫦娥五号探测器GNC系统的架构设计、工作模式以及在轨飞行结果.结果表明,GNC系统设计正确,成功完成了动力下降、起飞上升、交会对接、返回再入等关键动作,实现了月球表面起飞上升、月球轨道交会对接以及携带月壤以近第二宇宙速度二次再入返回的三项首次任务,各项功能性能满足任务要求.  相似文献   

5.
National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS).  相似文献   

6.
As scientists and mission planners develop planetary protection requirements for future Mars sample return missions, they must recognize the socio-political context in which decisions about the mission will be made and pay careful attention to public concerns about potential back contamination of Earth. To the extent that planetary protection questions are unresolved or unaddressed at the time of an actual mission, they offer convenient footholds for public challenges in both legal and decision making realms, over which NASA will have little direct control. In this paper, two particular non-scientific areas of special concern are discussed in detail: 1) legal issues and 2) the decision making process. Understanding these areas is critical for addressing legitimate public concerns as well as for fulfilling procedural requirements regardless whether sample return evokes public controversy. Legal issues with the potential to complicate future missions include: procedural review under National Environmental Policy Act (NEPA); uncertainty about institutional control and authority; conflicting regulations and overlapping jurisdictions; questions about international treaty obligations and large scale impacts; uncertanities about the nature of the organism; and constitutional and regulatory concerns about quarantine, public health and safety. In light of these important legal issues, it is critical that NASA consider the role and timing of public involvement in the decision making process as a way of anticipating problem areas and preparing for legitimate public questions and challenges to sample return missions.  相似文献   

7.
As NASA implements the U.S. Space Exploration Policy, life support systems must be provided for an expanding sequence of exploration missions. NASA has implemented effective life support for Apollo, the Space Shuttle, and the International Space Station (ISS) and continues to develop advanced systems. This paper provides an overview of life support requirements, previously implemented systems, and new technologies being developed by the Exploration Life Support Project for the Orion Crew Exploration Vehicle (CEV) and Lunar Outpost and future Mars missions. The two contrasting practical approaches to providing space life support are (1) open loop direct supply of atmosphere, water, and food, and (2) physicochemical regeneration of air and water with direct supply of food. Open loop direct supply of air and water is cost effective for short missions, but recycling oxygen and water saves costly launch mass on longer missions. Because of the short CEV mission durations, the CEV life support system will be open loop as in Apollo and Space Shuttle. New life support technologies for CEV that address identified shortcomings of existing systems are discussed. Because both ISS and Lunar Outpost have a planned 10-year operational life, the Lunar Outpost life support system should be regenerative like that for ISS and it could utilize technologies similar to ISS. The Lunar Outpost life support system, however, should be extensively redesigned to reduce mass, power, and volume, to improve reliability and incorporate lessons learned, and to take advantage of technology advances over the last 20 years. The Lunar Outpost design could also take advantage of partial gravity and lunar resources.  相似文献   

8.
Mars Sample Return (MSR) represents an important scientific goal in space exploration. Any sample return mission will be extremely challenging from a scientific, economic and technical standpoint. But equally testing, will be communicating with a public that may have a very different perception of the mission. A MSR mission will generate international publicity and it is vital that NASA acknowledge the nature and extent of public concern about the mission risks and, perhaps equally importantly, the public’s confidence in NASA’s ability to prepare for and manage these risks. This study investigated the level of trust in NASA in an Australian population sample, and whether this trust was dependent on demographic variables. Participants completed an online survey that explored their attitudes towards NASA and a MSR mission. The results suggested that people believe NASA will complete the mission successfully but have doubts as to whether NASA will be honest when communicating with the public. The most significant finding to emerge from this study was that confidence in NASA was significantly (p < 0.05) related to the respondent’s level of knowledge regarding the risks and benefits of MSR. These results have important implications for risk management and communication.  相似文献   

9.
The recovery of potable water from space mission wastewater is critical for the life support and environmental health of crew members in long-term missions. NASA estimates reveal that at manned space missions 1.91 kg/person day of urine is produced, with urea and various salts as its main components. In this research we explore the utilization of urease (EC 3.5.1.5, 15,000 U/g) along with a platinized boron doped diamond electrode (Pt-BDD) to degrade urea. Urea is directly degraded to nitrogen by the in situ utilization of the reaction products as a strategy to increase the amount of clean water in future space expeditions. The biochemical reaction of urease produces ammonia and carbon dioxide from urea. Thereafter, ammonia is electrooxidized at the interface of the Pt-BDD producing molecular nitrogen. The herein presented system has been proven to have 20% urea conversion efficiency. This research has potential applications for future long-term space missions since the reaction byproducts could be used for a biomass subsystem (in situ resource recovery), while generating electricity from the same process.  相似文献   

10.
Societal and non-scientific factors represent potentially significant impediments for future Mars missions, especially in areas involving planetary protection. This paper analyzes public concerns about forward contamination to Mars and back contamination to Earth, evaluates major areas where lack of information may lead to uncontrollable impacts on future missions, and concludes that NASA should adopt a strategy that actively plans both the generation and subsequent management of planetary protection information to ensure that key audiences obtain needed information in a timely manner. Delay or avoidance in dealing with societal issues early in mission planning will increase the likelihood of public opposition, cost increases and missed launch windows. While this analysis of social and non-scientific considerations focuses on future Mars missions, the findings are also relevant for RTG launches, nuclear propulsion and other NASA activities perceived to have health, safety or environmental implications.  相似文献   

11.
Regenerative life support systems based on the use of biological material have been considered for inclusion in manned spacecraft since the early days of the United States space program. These biological life support systems are currently being developed by NASA in the Controlled Ecological Life Support System (CELSS) program. Because of the progress being achieved in the CELSS program, it is time to determine which space missions may profit from use of the developing technology. This paper presents the results of a study that was conducted to estimate where potential transportation cost savings could be anticipated by using CELSS technology for selected future manned space missions.

Six representative missions were selected for study from those included in NASA planning studies. The selected missions ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The paper presents the analytical study approach and describes the missions and systems considered, together with the benefits derived from CELSS when applicable.  相似文献   


12.
Past and current magnetosphere missions employ conventional spacecraft formations for in situ observations of the geomagnetic tail. Conventional spacecraft flying in inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year, since the geomagnetic tail is always aligned with the Earth-Sun line, and therefore, rotates annually. Solar sails are able to artificially create sun-synchronous orbits such that the orbit apse line remains aligned with the geomagnetic tail line throughout the entire year. This continuous presence in the geomagnetic tail can significantly increase the science phase for magnetosphere missions. In this paper, the problem of solar sail formation design is explored using nonlinear programming to design optimal two-craft, triangle, and tetrahedron solar sail formations, in terms of formation quality and formation stability. The designed formations are directly compared to the formations used in NASA’s Magnetospheric Multi-Scale mission.  相似文献   

13.
The atmosphere of Mars has many of the ingredients that can be used to support human exploration missions. It can be "mined" and processed to produce oxygen, buffer gas, and water, resulting in significant savings on mission costs. The use of local materials, called ISRU (for in-situ resource utilization), is clearly an essential strategy for a long-term human presence on Mars from the standpoints of self-sufficiency, safety, and cost. Currently a substantial effort is underway by NASA to develop technologies and designs of chemical plants to make propellants from the Martian atmosphere. Consumables for life support, such as oxygen and water, will probably benefit greatly from this ISRU technology development for propellant production. However, the buffer gas needed to dilute oxygen for breathing is not a product of a propellant production plant. The buffer gas needs on each human Mars mission will probably be in the order of metric tons, primarily due to losses during airlock activity. Buffer gas can be separated, compressed, and purified from the Mars atmosphere. This paper discusses the buffer gas needs for a human mission to Mars and consider architectures for the generation of buffer gas including an option that integrates it to the propellant production plant.  相似文献   

14.
The European Space Agency's Solar Polar spacecraft is scheduled for launch in 1986. A solar X-ray and cosmic gamma ray burst detector will be aboard. Although the solar polar mission will not provide the long baselines originally planned, due to the cancellation of the NASA spacecraft, it is shown that arrival time analysis between the remaining ESA spacecraft and other missions will nevertheless achieve extremely precise localizations.  相似文献   

15.
The planned NASA sample acquisition flight missions to Mars pose several interesting planetary protection issues. In addition to the usual forward contamination procedures for the adequate protection of Mars for the sake of future missions, there are reasons to ensure that the sample is not contaminated by terrestrial microbes from the acquisition mission. Recent recommendations by the Space Studies Board (SSB) of the National Research Council (United States), would indicate that the scientific integrity of the sample is a planetary protection concern (SSB, 1997). Also, as a practical matter, a contaminated sample would interfere with the process for its release from quarantine after return for distribution to the interested scientists. These matters are discussed in terms of the first planned acquisition mission.  相似文献   

16.
The Ballooncraft Support Systems were developed by NASA Wallops Flight Facility for use on ULDB class balloon missions. The support systems have now flown two missions supporting the Cosmic Rays Energetics and Mass (CREAM) experiment. The first, CREAM I, flown in December 2004, was for a record breaking 41 days, 21 h, and the second flight flown in December 2005, was for 28 days, 9 h. These support systems provide CREAM with power, telecommunications, command, and data handling including flight computers, mechanical structures, thermal management, and attitude control to help ensure a successful scientific mission. This paper addresses the performance and success of these support systems over the two missions.  相似文献   

17.
NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR.  相似文献   

18.
针对高超声速飞行器非标称再入飞行任务的高精度自主制导问题,研究了一种基于轨迹在线规划与跟踪律在线计算的全自主自适应制导方法.该方法基于拟平衡滑翔条件与高精度的规划模型在线生成满足多路径约束的参考轨迹,在跟踪参考轨迹时引入符号函数法在线计算线性二次调节器的反馈增益矩阵,以获得高精度的自适应跟踪律.最后通过远程、近程两种工况的蒙特卡洛打靶仿真验证了该方法的精度与鲁棒性.  相似文献   

19.
The lunar gravity field is a foundation to study the lunar interior structure, and to recover the evolution history of the Moon. It is still an open and key topic for lunar science. For above mentioned reasons, it becomes one of the important scientific objectives of recent lunar missions, such as KAGUYA (SELENE) the Japanese lunar mission and Chang’E-1, the Chinese lunar mission. The Chang’E-1 and the SELENE were successfully launched in 2007. It is estimated that these two missions can fly around the Moon longer than 6 months simultaneously. In these two missions, the Chinese new VLBI (Very Long Baseline Interferometry) network will be applied for precise orbit determination (POD) by using a differential VLBI (D-VLBI) method during the mission period. The same-beam D-VLBI technique will contribute to recover the lunar gravity field together with other conventional observables, i.e. R&RR (Range and Range Rate) and multi-way Doppler. Taking VLBI tracking conditions into consideration and using the GEODYNII/SOVLE software of GSFC/NASA/USA [8 and 10], we simulated the lunar gravity field recovering ability with and without D-VLBI between the Chang’E-1 and SELENE main satellite. The cases of overlapped flying and tracking period of 30 days, 60 days and 90 days have been analyzed, respectively. The results show that D-VLBI tracking between two lunar satellites can improve the gravity field recovery remarkably. The results and methods introduced in this paper will benefit the actual missions.  相似文献   

20.
总结了近20年来火星探测的重要发现以及生命、气候和地质3个方面尚未解决的关键科学问题;介绍了美国国家航空航天局(NASA)2020火星探测任务的科学目标、科学载荷和着陆区选择的工程条件限制,并重点分析了经过3次着陆区选择研讨会,上百位行星科学家投票选取的排名前3的预选着陆区的地质情况。在此基础上,提出了对我国2020年火星任务的着陆探测部分的一些思考,并根据不同的任务目标(聚焦生命、气候和地质问题;支持载人火星探测的资源勘察;工程技术验证)提出了3个候选着陆区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号