首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
电离层等离子体不规则结构通常会影响星地卫星的通信、导航及定位等,因此研究不规则体的结构特征和演化过程具有非常重要的科学意义和应用价值。中尺度电离层行进式扰动(MSTID)是一种常发于F层的电离层扰动,其演化过程十分复杂。本文利用伊春和兴隆台站全天空气辉成像仪、Swarm卫星、佳木斯高频雷达以及漠河和十三陵台站数字测高仪观测数据,对2018年10月17日夜间出现在中国东北区域上空的MSTID事件进行分析。该MSTID事件传播时间较长,在气辉观测中持续时间超过4 h(12:02-16:23 UT),其波长范围为176.3~322.5 km,波速范围为67.0~154.1 m·s–1。研究结果显示,该MSTID可能产生于较高的纬度,自东北向西南往中纬传播,依次经过伊春和兴隆台站的气辉观测区域。   相似文献   

2.
GPS relative navigation filters could benefit notably from an accurate modeling of the ionospheric delays, especially over large baselines (>100 km) where double difference delays can be higher than several carrier wavelengths. This paper analyzes the capability of ionospheric path delay models proposed for spaceborne GPS receivers in predicting both zero-difference and double difference ionospheric delays. We specifically refer to relatively simple ionospheric models, which are suitable for real-time filtering schemes. Specifically, two ionospheric delay models are evaluated, one assuming an isotropic electron density and the other considering the effect on the electron density of the Sun aspect angle. The prediction capability of these models is investigated by comparing predicted ionospheric delays with measured ones on real flight data from the Gravity Recovery and Climate Experiment mission, in which two satellites fly separated of more than 200 km. Results demonstrate that both models exhibit a correlation in the excess of 80% between predicted and measured double-difference ionospheric delays. Despite its higher simplicity, the isotropic model performs better than the model including the Sun effect, being able to predict double differenced delays with accuracy smaller than the carrier wavelength in most cases. The model is thus fit for supporting integer ambiguity fixing in real-time filters for relative navigation over large baselines. Concerning zero-difference ionospheric delays, results demonstrate that delays predicted by the isotropic model are highly correlated (around 90%) with those estimated using GPS measurements. However, the difference between predicted and measured delays has a root mean square error in the excess of 30 cm. Thus, the zero-difference ionospheric delays model is not likely to be an alternative to methods exploiting carrier-phase observables for cancelling out the ionosphere contribution in single-frequency absolute navigation filters.  相似文献   

3.
Scintillated GPS phase observations are traditionally characterized by the phase scintillation index, derived from specialized GPS receivers usually tracking at 50 Hz. Geodetic quality GPS receivers, on the other hand, are normally tracking at frequencies up to 1 Hz. However, availability of continuously operating geodetic receivers both in time and geographical location are superior to scintillation receiver’s coverage in many parts of the world. This motivates scintillation studies using regional and global geodetic GPS networks. Previous studies have shown the usefulness of GPS estimated total electron content variations for detecting ionospheric irregularities. In this paper, collocated geodetic and scintillation receivers are employed to compare proxy indices derived from geodetic receivers with the phase scintillation index during quiet and moderately disturbed ionospheric conditions. Sensitivity of the phase scintillation indices at high latitude stations to geomagnetic activity is discussed. Global mapping of ionospheric disturbances using proxy indices from real-time 1 Hz GPS stations are also presented.  相似文献   

4.
The response of the ionospheric F-region in the equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 06–07 April 2000 has been studied in the present investigation. The geomagnetic storm reached a minimum Dst of −288 nT at 0100 UT on 07 April. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from GPS observations obtained at Imperatriz (5.5°S, 47.5°W; IMPZ), Brasília (15.9°S, 47.9°W; BRAZ), Presidente Prudente (22.12°S, 51.4°W; UEPP), and Porto Alegre (30.1°S, 51.1°W; POAL) during the period 05–08 April. Also, several GPS-based TEC maps are presented from the global GPS network, showing widespread and drastic TEC changes during the different phases of the geomagnetic storm. In addition, ion density measurements on-board the satellite Defense Meteorological Satellite Program (DMSP) F15 orbiting at an altitude of 840 km and the first Republic of China satellite (ROCSAT-1) orbiting at an altitude of 600 km are presented. The observations indicate that one of the orbits of the DMSP satellite is fairly close to the 4 GPS stations and both the DMSP F15 ion-density plots and the phase fluctuations from GPS observations show no ionospheric irregularities in the Brazilian sector before 2358 UT on the night of 06–07 April 2000. During the fast decrease of Dst on 06 April, there is a prompt penetration of electric field of magnetospheric origin resulting in decrease of VTEC at IMPZ, an equatorial station and large increase in VTEC at POAL, a low latitude station. This resulted in strong phase fluctuations on the night of 06–07 April, up to POAL. During the daytime on 07 April during the recovery phase, the VTEC observations show positive ionospheric storm at all the GPS stations, from IMPZ to POAL, and the effect increasing from IMPZ to POAL. This is possibly linked to the equatorward directed meridional wind. During the daytime on 08 April (the recovery phase continues), the VTEC observations show very small negative ionospheric storm at IMPZ but the positive ionospheric storm effect is observed from BRAZ to POAL possibly linked to enhancement of the equatorial ionospheric anomaly.  相似文献   

5.
In this paper, we study ionospheric total electron content (TEC) disturbances associated with tropical cyclones (TCs). The study relies on the statistical analysis of six cyclones of different intensity which occurred in the North–West Pacific Ocean in September–November 2005. We have used TEC data from the international network of two-frequency ground-based GPS receivers and NCEP/NCAR meteorological archive. TEC variations of different period ranges (02–20 and 20–60 min) are shown to be more intense during TC peaks under quiet geomagnetic conditions. The highest TEC variation amplitudes are registered when the wind speed in the cyclone and the TC area are maximum. The intensification of TEC disturbances is more pronounced when several cyclones occur simultaneously. We have revealed that the ionospheric response to TC can be observed only after the cyclone has reached typhoon intensity. The ionospheric response is more pronounced at low satellite elevation angles.  相似文献   

6.
Since the United States government discontinued Selective Availability (SA) on 1 May 2000, ionospheric effects have been responsible for the largest errors in GPS systems. The standard Differential GPS (DGPS) method is incapable of completely eliminating the ionospheric error. This paper describes a new approach to determine the differential ionospheric error between geographically distributed receiver stations. The ray paths of GPS signals were simulated using a modified Jones 3D ray tracing programme that includes the effect of the geomagnetic field. A Nelder–Mead optimisation algorithm was embedded in the program to precisely determine the satellite-to-station path. A realistic ionospheric model is essential for accurate ray tracing results and for estimates of differential error that are accurate on sub-centimetre scales. Here, the ionospheric model used in the ray tracing programme was developed by fitting realistic ionosphere profiles with a number of exponential functions. Results were compared to the theoretical approach. Results show that the differential delay is about 1–5 cm at low elevation angles for a short baseline of 10 km, as reported in other literature. This delay is often neglected in DGPS application. The differential delay also shows a pattern similar to that predicted by the Klobuchar model. The method proposed here can be used to improve future GPS applications.  相似文献   

7.
The total electron content (TEC) estimation by the Global Positioning System (GPS) can be seriously affected by the differential code biases (DCB), referred to as inter-frequency biases (IFB), of the satellite and receiver so that an accuracy of GPS–TEC value is dependent on the error of DCBs estimation. In this paper, we proposed the singular value decomposition (SVD) method to estimate the DCB of GPS satellites and receivers using the Korean GPS network (KGN) in South Korea. The receiver DCBs of about 49 GPS reference stations in KGN were determined for the accurate estimation of the regional ionospheric TEC. They obtained from the daily solution have large biases ranging from +5 to +27 ns for geomagnetic quiet days. The receiver DCB of SUWN reference station was compared with the estimates of IGS and JPL global ionosphere map (GIM). The results have shown comparatively good agreement at the level within 0.2 ns. After correction of receiver DCBs and knowing the satellite DCBs, the comparison between the behavior of the estimated TEC and that of GIMs was performed for consecutive three days. We showed that there is a good agreement between KASI model and GIMs.  相似文献   

8.
There is a lack of independent ionospheric data that can be used to validate GPS imaging results at mid latitudes over severe storm times. Doppler Orbitography and Radio positioning Integrated by Satellite (DORIS), a global network of dual-frequency ground to satellite observations, provides this missing data and here is employed as verification to show the accuracy of the ionospheric GPS images in terms of the total electron content (TEC). In this paper, the large-scale ionospheric structures that appeared during the strong geomagnetic storm of 20 November 2003 are reconstructed with a GPS tomographic algorithm, known as MIDAS, and validated with DORIS TEC measurements. The main trough shown in an extreme equatorward position in the ionospheric imaging over mainland Europe is confirmed by DORIS satellite measurements. Throughout the disturbed day, the variations of relative slant TECs between DORIS data and MIDAS results agree quite well, with the average of the mean differences about 2 TECu. We conclude that as a valuable supplement to GPS data, DORIS ionospheric measurements can be used to analyse TEC variations with a relatively high resolution, ∼10 s in time and tens of kilometres in space. This will be very helpful for identification of some highly dynamic structures in the ionosphere found at mid-latitudes, such as the main trough, TID (Travelling Ionospheric Disturbances) and SED (Storm Enhanced Density), and could be used as a valuable auxiliary data source in ionospheric imaging.  相似文献   

9.
Signals from Global Positioning System (GPS) satellites at the horizon or at low elevations are often excluded from a GPS solution because they experience considerable ionospheric delays and multipath effects. Their exclusion can degrade the overall satellite geometry for the calculations, resulting in greater errors; an effect known as the Dilution of Precision (DOP). In contrast, signals from high elevation satellites experience less ionospheric delays and multipath effects. The aim is to find a balance in the choice of elevation mask, to reduce the propagation delays and multipath whilst maintaining good satellite geometry, and to use tomography to correct for the ionosphere and thus improve single-frequency GPS timing accuracy. GPS data, collected from a global network of dual-frequency GPS receivers, have been used to produce four GPS timing solutions, each with a different ionospheric compensation technique. One solution uses a 4D tomographic algorithm, Multi-Instrument Data Analysis System (MIDAS), to compensate for the ionospheric delay. Maps of ionospheric electron density are produced and used to correct the single-frequency pseudorange observations. This method is compared to a dual-frequency solution and two other single-frequency solutions: one does not include any ionospheric compensation and the other uses the broadcast Klobuchar model. Data from the solar maximum year 2002 and October 2003 have been investigated to display results when the ionospheric delays are large and variable. The study focuses on Europe and results are produced for the chosen test site, VILL (Villafranca, Spain). The effects of excluding all of the GPS satellites below various elevation masks, ranging from 5° to 40°, on timing solutions for fixed (static) and mobile (moving) situations are presented. The greatest timing accuracies when using the fixed GPS receiver technique are obtained by using a 40° mask, rather than a 5° mask. The mobile GPS timing solutions are most accurate when satellites at lower elevations continue to be included: using a mask between 10° and 20°. MIDAS offers the most accurate and least variable single-frequency timing solution and accuracies to within 10 ns are achieved for fixed GPS receiver situations. Future improvements are anticipated by combining both GPS and Galileo data towards computing a timing solution.  相似文献   

10.
A study of the critical frequency foF2 variations after the large earthquake (Ms = 8.1) which occurred on 29 September, 2009 in the region of Samoa Islands in the Pacific Ocean is carried out using data of the ionospheric station of Kwajalein. The epicenter of the earthquake was located at about 184 km southwest from Apia (the capital of West Samoa). It was found that wave-like perturbations of foF2 were observed for ∼3 h above the station (located approximately 3560 km northwest from the epicenter). The amplitude of the disturbance was as large as ∼20% of the average magnetic quiet day foF2 values. A comparison of the observed perturbations of foF2 with the ones detected at Stanford ionospheric station after the Alaska earthquake of 28 March 1964 (Ms = 8.4) showed a close similarity of the wave-like perturbations of foF2 in both cases.  相似文献   

11.
The ionospheric plasma density can be significantly disturbed during magnetic storms. In the conventional scenario of ionospheric storms, the negative storm phases with plasma density decreases are caused by neutral composition changes, and the positive storm phases with plasma density increases are often related to atmospheric gravity waves. However, recent studies show that the global redistribution of the ionospheric plasma is dominated primarily by electric fields during the first hours of magnetic storms. In this paper, we present the measurements of ionospheric disturbances by the DMSP satellites and GPS network during the magnetic storm on 6 April 2000. The DMSP measurements include the F region ion velocity and density at the altitude of ∼840 km, and the GPS receiver network provides total electron content (TEC) measurements. The storm-time ionospheric disturbances show the following characteristics. The plasma density is deeply depleted in a latitudinal range of ∼20° over the equatorial region in the evening sector, and the depletions represent plasma bubbles. The ionospheric plasma density at middle latitudes (20°–40° magnetic latitudes) is significantly increased. The dayside TEC is increased simultaneously over a large latitudinal range. An enhanced TEC band forms in the afternoon sector, goes through the cusp region, and enters the polar cap. All the observed ionospheric disturbances occur within 1–5 h from the storm sudden commencement. The observations suggest that penetration electric fields play a major role in the rapid generation of equatorial plasma bubbles and the simultaneous increases of the dayside TEC within the first 2 h during the storm main phase. The ionospheric disturbances at later times may be caused by the combination of penetration electric fields and neutral wind dynamo process.  相似文献   

12.
On April 20, 2013, an earthquake of M7.0 occurred in Lushan, Sichuan province, China. This paper investigates the coseismic ionospheric anomalies using GPS (Global Positioning System) data from 23 reference stations in Sichuan province that are a part of the Crustal Movement Observation Network of China (CMONOC). The recorded results show that a clear ionospheric anomaly occurred within 15 min after the earthquake near the epicenter, and the occurrence time of the anomalies recorded by various stations is related to the distance from the epicenter. The maximum anomaly is 0.25 TECu, with a 2 min duration and the distance of the recording station to the epicenter is 83 km. Acoustic waves generated by the crustal vertical movement during the earthquake propagate up to the height of the ionosphere lead to the ionospheric anomaly, and the propagation speed of the acoustic wave is calculated as 0.72 ± 0.04 km/s based on the propagation time and propagation distance, consistent with the average speed of sound waves within a 0–450 km atmospheric height.  相似文献   

13.
The responses of the ionospheric F region using GPS–TEC measurements during two moderate geomagnetic storms at equatorial, low-, and mid-latitude regions over the South American and African sectors in May 2010, during the ascending phase of solar cycle 24, are investigated. The first moderate geomagnetic storm studied reached a minimum Dst value of −64 nT at 1500 UT on 02 May 2010 and the second moderate geomagnetic storm reached a minimum Dst value of −85 nT at 1400 UT on 29 May 2010. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from Global Positioning System (GPS) observations from the equatorial to mid-latitude regions in the South American and African sectors. Our results obtained during these two moderate geomagnetic storms from both sectors show significant positive ionospheric storms during daytime hours at the equatorial, low-, and mid-latitude regions during the main and recovery phases of the storms. The thermospheric wind circulation change towards the equator is a strong indicator that suggests an important mechanism is responsible for these positive phases at these regions. A pre-storm event that was observed in the African sector from low- to the mid-latitude regions on 01 May 2010 was absent in the South American sector. This study also showed that there was no generation or suppression of ionospheric irregularities by storm events. Therefore, knowledge about the suppression and generation of ionospheric irregularities during moderate geomagnetic storms is still unclear.  相似文献   

14.
GALOCAD project “Development of a Galileo Local Component for the nowcasting and forecasting of atmospheric disturbances affecting the integrity of high precision Galileo applications” aims to perform a detailed study on ionospheric small- and medium-scale structures and to assess the influence of these structures on the reliability of Galileo precise positioning applications. GPS-derived TEC (total electron content) is obtained from the Belgium Dense Network (BDN), consisting of 67 permanent GPS stations. An empirical 3-D model is developed for studying these ionospheric structures. The model, named LLT model, described temporal variations of TEC in latitude/longitude frame (46°, 52°)N and (−1°, 11°)E. The spatial variations of TEC are modeled by Tchebishev base functions, while the temporal variations are described by a trigonometric basis. To fit the model to the data, the observed area is divided into bins with (1° × 1°) geographic scale and 6 min on time axis. LLT model is made flexible, with varying number of coefficients along each axis. This allows different degree of smoothing, which is the key element of the present approach. Model runs with higher number of coefficients, capturing in details medium-scale TEC structures are subtracted from results obtained with smaller number of coefficients; the latter represent the background ionosphere. The residual structures are localized and followed as they travel across the observed area. In this way, the size, velocity, and direction of the irregular structures are obtained.  相似文献   

15.
The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) is a six satellite radio occultation mission that was launched in April 2006. The close proximity of these satellites during some months after launch provides a unique opportunity to evaluate the precision of Global Positioning System (GPS) radio occultation (RO) retrievals of ionospheric electron density from nearly collocated and simultaneous observations. RO data from 30 consecutive days during July and August 2006 are divided into ten groups in terms of daytime or nighttime and latitude. In all cases, the best precision values (about 1%) are found at the F peak height and they slightly degrade upwards. For all daytime groups, it is seen that electron density profiles above about 120 km height exhibit a substantial improvement in precision. Nighttime groups are rather diverse: in particular, the precision becomes better than 10% above different levels between 120 and 200 km height. Our overall results show that up to 100–200 km (depending on each group), the uncertainty associated with the precision is in the order of the measured electron density values. Even worse, the retrieved values tend sometimes to be negative. Although we cannot rely directly on electron density values at these altitudes, the shape of the profiles could be indicative of some ionospheric features (e.g. waves and sporadic E layers). Above 200 km, the profiles of precision are qualitatively quite independent from daytime or latitude. From all the nearly collocated pairs studied, only 49 exhibited a difference between line of sight angles of both RO at the F peak height larger than 10°. After analyzing them we find no clear indications of a significant representativeness error in electron density profiles due to the spherical assumption above 120 km height. Differences in precision between setting and rising GPS RO may be attributed to the modification of the processing algorithms applied to rising cases during the initial period of the COSMIC mission.  相似文献   

16.
Ionospheric response to tropical cyclones (TCs) was estimated experimentally on the example of three powerful cyclones – KATRINA (23–31 August 2005), RITA (18–26 September 2005), and WILMA (15–25 October 2005). These TCs were active near the USA Atlantic coast. Investigation was based on Total Electron Content (TEC) data from the international network of two-frequency ground-based GPS receivers and the NCEP/NCAR Reanalysis data. We studied the spatial–temporal dynamics of wave TEC disturbances over two periods of ranges (02–20 min and 20–60 min). To select the ionospheric disturbances which were most likely to be associated with the cyclones, maps of TEC disturbances were compared with those of meteorological parameters.  相似文献   

17.
Both single and dual frequency GPS relative navigation filters may benefit from proper predictions of single differenced ionospheric delays. In this article, the single differenced ionospheric delays of GPS observations are predicted for the GRACE formation during the switch manoeuvre.Two prediction methods are considered. The first is based on a Taylor expansion to first order of a mapping function that maps slant total electron content measurements to vertical total electron content estimates. The second method fits a shape profile through undifferenced ionospheric data available. It then raytraces through this profile to estimate the difference in total electron content along the path of the GPS signals.Continuously changing ionospheric conditions hamper the assessment of the quality of the predictions. Comparison of both methods shows that the raytracing method performs better. The difference of predictions and measurements generally shows a smaller RMS than the measurements alone. However, both methods suffer from a number of systematically unpredicted observations, which arise from small unaccounted differential variations in electron densities along the path of the GPS signals. These prediction methods perform better when spacecraft separation is small. Baselines considered here range from tens of kilometres down to several hundred metres. When smallest spacecraft separation occurs (0.4 km), the single differenced ionospheric delays exhibit RMS values of 0.0089 m. The first method shows a difference between measurements and predictions with an RMS of 0.0081 m. For the second method the difference RMS is found to be 0.0067 m.  相似文献   

18.
The solar, geomagnetic, gravitational and seismic activities can cause spatial and temporal (hourly, diurnal, seasonal and annual) variabilities of the ionosphere. Main observable ionospheric parameters such as Total Electron Content (TEC) can be used to quantify these. TEC is the total number of electrons on a ray path crossing the atmosphere. The network of world-wide Global Positioning System (GPS) receivers provide a cost-effective solution in estimating TEC over a significant proportion of global land mass. This study is focused on the analysis of the variations of ionosphere over a midlatitude region using GPS-TEC estimates for three Sun Spot Numbers (SSN) periods. The investigation is based on a fast and automatic variability detection algorithm, Differential Rate Of TEC (DROT). The algorithm is tested using literature data on disturbances generated by a geomagnetic activity, a Solar Flare, a Medium Scale Travelling Ionospheric Disturbance (MSTID), a Large Scale TID (LSTID) and an earthquake. Very good agreement with the results in the literature is found. DROT is applied to IONOLAB-TEC estimates from nine Turkish National Permanent GPS Network (TNPGN Active) stations over Turkey to detect the any wave-like oscillations, sudden disturbances and other irregularities during December, March, June, September months for 2010, 2011, 2012 years. It is observed that DROT algorithm is capable of detecting both small and large scale variability due to climatic, gravitational, geomagnetic and solar activities in all layers of ionosphere. The highest DROT values are observed in 2010 during winter months. In higher solar activity years of 2011 and 2012, DROT is able to indicate both seasonal variability and severe changes in ionosphere due to increased number of geomagnetic storms and local seismic activities.  相似文献   

19.
First comparison of in situ density fluctuations measured by the DEMETER satellite with ground based GPS receiver measurements at the equatorial anomaly station Bhopal (geographic coordinates (23.2°N, 77.6°E); geomagnetic coordinates (14.29°N, 151.12°E)) for the low solar activity year 2005, are presented in this paper. Calculation of the diurnal maximum of the strength of the equatorial electrojet, which can serve as precursor to ionospheric scintillations in the anomaly region is also done. The Langmuir Probe experiment and Plasma Analyzer onboard DEMETER measure the electron and ion densities respectively. Irregularities in electron density distribution cause scintillations on transionospheric links and there exists a close relationship between an irregularity and scintillation. In 40% of the cases, DEMETER detects the irregularity structures (dNe/Ne ? 5% and dNi/Ni (O+) ? 5%) and GPS L band scintillations (S4 ? 0.2) are also observed around the same time, for the low solar activity period. It is found that maximum irregularity intensity is obtained in the geomagnetic latitude range of 10–20° for both electron density and ion density. As the GPS signals pass through this irregularity structure, scintillations are recorded by the GPS receiver installed at the equatorial anomaly station, Bhopal it is interesting to note that in situ density fluctuations observed on magnetic flux tubes that pass over Bhopal can be used as indicator of ionospheric scintillations at that site. Many cases of density fluctuations and associated scintillations have been observed during the descending low solar activity period. The percentage occurrence of density irregularities and scintillations shows good correspondence with diurnal maximum of the strength of electrojet, however this varies with different seasons with maximum correspondence in summer (up to 66%) followed by equinox (up to 50%) and winter (up to 46%). Also, there is a threshold value of EEJ strength to produce density irregularities ((dNe/Ne)max ? 5%) and for moderate to strong scintillations (S4 ? 0.3) to occur. For winter this value is found to be ∼40 nT whereas for equinox and summer it is around 50 nT.  相似文献   

20.
The occurrence of ionospheric scintillations with S4 ? 0.2 was studied using GPS measurements at Guilin, China (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of the equatorial anomaly. The results are presented for data collected from January 2009 to March 2010. The results show that nighttime amplitude scintillations only took place in February and March of the considered years, while daytime amplitude scintillations occurred in August and December of 2009. Nighttime amplitude scintillations, observed in the south of Guilin, always occurred with phase scintillations, TEC (Total Electron Content) depletions, and ROT (Rate Of change of TEC) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations always took place simultaneously for most of the GPS satellites which appeared over Guilin in different azimuth directions. Ground-based GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio (SNR) measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively. Moreover, strong daytime amplitude scintillations may be associated with the plasma density enhancements in ionospheric E region caused by the Perseid and Geminid meteor shower activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号