首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Inspired by a terrestrial ecosystem, Micro-Ecological Life Support System Alternative (MELiSSA) is a project focused on a closed-loop life support system intended for future long-term manned missions (Moon and Mars bases). Started by the ESA in 1989, this 5-compartment concept has evolved through a mechanistic engineering approach designed to acquire both theoretical and technical knowledge. In its current state of development, the project can now start to demonstrate the MELiSSA loop concept at pilot scale. Thus, an integration strategy for a MELiSSA Pilot Plant (MPP) has been defined, describing the different test phases and connections between compartments. The integration steps are due to be started in 2008 and completed with a complete operational loop in 2015. The ultimate objective is to achieve a closed liquid and gas loop fulfiling 100% of oxygen requirements and at least 20% of food requirements for one-man. Although the integration logic could start with the most advanced processes in terms of knowledge and hardware development, this logic needs to be expanded to encompass a high-level simulation policy. This simulation exercise will make it possible to run effective demonstrations of each independent process, followed by progressive coupling with other processes in operational conditions mirroring as far as possible the final configuration.  相似文献   

2.
Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada’s contribution of the Higher Plant Compartment of the European Space Agency’s MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity applications). To advance the technical readiness for the proposed lunar missions, including a lunar plant growth lander, lunar “salad machine” (i.e. small scale plant production unit) and a full scale lunar plant production system, a suite of terrestrial developments and analogue systems are proposed. As has been successfully demonstrated by past Canadian advanced life support activities, terrestrial technology transfer and the development of highly qualified personnel will serve as key outputs for Canadian advanced life support system research programs. This approach is designed to serve the Canadian greenhouse industry by developing compliance measures for mitigating environmental impact, reducing labour and energy costs as well as improving Canadian food security, safety and benefit northern/remote communities.  相似文献   

3.
The anticipated evolution of life support technologies for ESA, considering both the complementary life support system requirements and the missions' characteristics, is presented. Based on these results, promising biological life support technologies for manned space missions have been selected by ESA either for their intrinsic ability and performance in effecting specific tasks for atmosphere-, water-, waste-management versus physico-chemical alternatives and/or for longer-term application to a more ecological concept (CES) focusing ultimately on food production. Actual status and plan for terrestrial and space testing of biological life support presented focusing on the "task specific" decontamination technology of the Biological Air Filter (BAF), and on food reprocessing technologies from biodegradable wastes with the MELISSA microbial ecosystem.  相似文献   

4.
MELISSA is a micro-organisms based ecosystem conceived as a tool for understanding the behaviour of artificial ecosystems, and developing the technology for a future biological life support system for long term space mission. The driving element of MELISSA is the recovering of oxygen and edible biomass from waste (faeces, urea). Due to its intrinsic instability and the safety requirements of manned missions, an important control strategy is developed to pilot this system and to optimize its recycling performance. This is a hierarchical control strategy. Each MELISSA compartment has its local control system, and taking into account the states of other compartments and a global desired functioning point, the upper level determines the setpoints for each compartment. The developed approach is based on first principles models of each compartment (physico chemical equations, stoichiometries, kinetic rates, ...). Those models are used to develop a global simulator of the system (in order to study the global functioning). They are also used in the control strategy, which is a non linear predictive model based strategy. This paper presents the general approach of the control strategy of the loop from the compartment level up to the overall loop. At the end, some simulation and experimental results are presented.  相似文献   

5.
6.
As part of the ground-based preparation for creating long-term life systems needed for space habitation and settlement, Space Biospheres Ventures (SBV) is undertaking the Biosphere 2 project near Oracle, Arizona. Biosphere 2, currently under construction, is scheduled to commence its operations in 1991 with a two-year closure period with a crew of eight people. Biosphere 2 is a facility which will be essentialy materially-closed to exchange with the outside environment. It is open to information and energy flow. Biosphere 2 is designed to achieve a complex life-support system by the integration of seven areas or "biomes"--rainforest, savannah, desert, marsh, ocean, intensive agriculture and human habitat. Unique bioregenerative technologies, such as soil bed reactors for air purification, aquatic waste processing systems, real-time analytic systems and complex computer monitoring and control systems are being developed for the Biosphere 2 project. Its operation should afford valuable insight into the functioning of complex life systems necessary for long-term habitation in space. It will serve as an experimental ground-based prototype and testbed for the stable, permanent life systems needed for human exploration of Mars.  相似文献   

7.
The unprecedented challenges of creating Biosphere 2, the world's first laboratory for biospherics, the study of global ecology and long-term closed ecological system dynamics, led to breakthrough developments in many fields, and a deeper understanding of the opportunities and difficulties of material closure. This paper will review accomplishments and challenges, citing some of the key research findings and publications that have resulted from the experiments in Biosphere 2. Engineering accomplishments included development of a technique for variable volume to deal with pressure differences between the facility and outside environment, developing methods of atmospheric leak detection and sealing, while achieving new standards of closure, with an annual atmospheric leakrate of less than 10%, or less than 300 ppm per day. This degree of closure permitted detailed tracking of carbon dioxide, oxygen, and trace gases such as nitrous oxide and ethylene over the seasonal variability of two years. Full closure also necessitated developing new approaches and technologies for complete air, water, and wastewater recycle and reuse within the facility. The development of a soil-based highly productive agricultural system was a first in closed ecological systems, and much was learned about managing a wide variety of crops using non-chemical means of pest and disease control. Closed ecological systems have different temporal biogeochemical cycling and ranges of atmospheric components because of their smaller reservoirs of air, water and soil, and higher concentration of biomass, and Biosphere 2 provided detailed examination and modeling of these accelerated cycles over a period of closure which measured in years. Medical research inside Biosphere 2 included the effects on humans of lowered oxygen: the discovery that human productivity can be maintained with good health with lowered atmospheric oxygen levels could lead to major economies on the design of space stations and planetary/lunar settlements. The improved health resulting from the calorie-restricted but nutrient dense Biosphere 2 diet was the first such scientifically controlled experiment with humans. The success of Biosphere 2 in creating a diversity of terrestrial and marine environments, from rainforest to coral reef, allowed detailed studies with comprehensive measurements such that the dynamics of these complex biomic systems are now better understood. The coral reef ecosystem, the largest artificial reef ever built, catalyzed methods of study now being applied to planetary coral reef systems. Restoration ecology advanced through the creation and study of the dynamics of adaptation and self-organization of the biomes in Biosphere 2. The international interest that Biosphere 2 generated has given new impetus to the public recognition of the sciences of biospheres (biospherics), biomes and closed ecological life systems. The facility, although no longer a materially-closed ecological system, is being used as an educational facility by Columbia University as an introduction to the study of the biosphere and complex system ecology and for carbon dioxide impacts utilizing the complex ecosystems created in Biosphere '.The many lessons learned from Biosphere 2 are being used by its key team of creators in their design and operation of a laboratory-sized closed ecological system, the Laboratory Biosphere, in operation as of March 2002, and for the design of a Mars on Earth(TM) prototype life support system for manned missions to Mars and Mars surface habitats. Biosphere 2 is an important foundation for future advances in biospherics and closed ecological system research.  相似文献   

8.
The Arthur Clarke Mars Greenhouse is a unique research facility dedicated to the study of greenhouse engineering and autonomous functionality under extreme operational conditions, in preparation for extraterrestrial biologically-based life support systems. The Arthur Clarke Mars Greenhouse is located at the Haughton Mars Project Research Station on Devon Island in the Canadian High Arctic. The greenhouse has been operational since 2002. Over recent years the greenhouse has served as a controlled environment facility for conducting scientific and operationally relevant plant growth investigations in an extreme environment. Since 2005 the greenhouse has seen the deployment of a refined nutrient control system, an improved imaging system capable of remote assessment of basic plant health parameters, more robust communication and power systems as well as the implementation of a distributed data acquisition system. Though several other Arctic greenhouses exist, the Arthur Clarke Mars Greenhouse is distinct in that the focus is on autonomous operation as opposed to strictly plant production. Remote control and autonomous operational experience has applications both terrestrially in production greenhouses and extraterrestrially where future long duration Moon/Mars missions will utilize biological life support systems to close the air, food and water loops. Minimizing crew time is an important goal for any space-based system. The experience gained through the remote operation of the Arthur Clarke Mars Greenhouse is providing the experience necessary to optimize future plant production systems and minimize crew time requirements. Internal greenhouse environmental data shows that the fall growth season (July–September) provides an average photosynthetic photon flux of 161.09 μmol m−2 s−1 (August) and 76.76 μmol m−2 s−1 (September) with approximately a 24 h photoperiod. The spring growth season provides an average of 327.51 μmol m−2 s−1 (May) and 339.32 μmol m−2 s−1 (June) demonstrating that even at high latitudes adequate light is available for crop growth during 4–5 months of the year. The Canadian Space Agency Development Greenhouse [now operational] serves as a test-bed for evaluating new systems prior to deployment in the Arthur Clarke Mars Greenhouse. This greenhouse is also used as a venue for public outreach relating to biological life support research and its corresponding terrestrial spin-offs.  相似文献   

9.
Space-based life support systems which include ecological components will rely on sophisticated hardware and software to monitor and control key system parameters. Autonomous closed artificial ecosystems are useful for research in numerous fields. We are developing a bioreactor designed to study both microbe-environment interactions and autonomous control systems. Currently we are investigating N-cycling and N-mass balance in closed microbial systems. The design features of the system involve real-time monitoring of physical parameters (e.g. temperature, light), growth solution composition (e.g. pH, NOx, CO2), cell density and the status of important hardware components. Control of key system parameters is achieved by incorporation of artificial intelligence software tools that permit autonomous decision-making by the instrument. These developments provide a valuable research tool for terrestrial microbial ecology, as well as a testbed for implementation of artificial intelligence concepts. Autonomous instrumentation will be necessary for robust operation of space-based life support systems, and for use on robotic spacecraft. Sample data acquired from the system, important features of software components, and potential applications for terrestrial and space research will be presented.  相似文献   

10.
空间高等植物培养装置用于中国天宫二号空间实验室开展微重力条件下高等植物生长机理研究.该装置由高等植物培养模块、生命保障模块、实时在线检测模块和返回单元等功能单元组成,可实现高等植物空间长周期培养,在轨启动生物实验,实时在线观察和荧光监测,水分循环利用及营养供给,模拟太阳长短日照周期控制与检测,环境温度测量与控制,CO2浓度调节,有害气体去除及航天员回收部分样品等功能.   相似文献   

11.
12.
Research and design of subsurface flow wetland wastewater treatment systems for a ground-based experimental prototype Mars Base facility has been carried out, using a subsurface flow approach. These systems have distinct advantages in planetary exploration scenarios: they are odorless, relatively low-labor and low-energy, assist in purification of water and recycling of atmospheric CO2, and will support some food crops. An area of 6-8 m2 may be sufficient for integration of wetland wastewater treatment with a prototype Mars Base supporting 4-5 people. Discharge water from the wetland system will be used as irrigation water for the agricultural crop area, thus ensuring complete recycling and utilization of nutrients. Since the primary requirements for wetland treatment systems are warm temperatures and lighting, such bioregenerative systems may be integrated into early Mars base habitats, since waste heat from the lights may be used for temperature maintenance in the human living environment. "Wastewater gardens (TM)" can be modified for space habitats to lower space and mass requirements. Many of its construction requirements can eventually be met with use of in-situ materials, such as gravel from the Mars surface. Because the technology requires little machinery and no chemicals, and relies more on natural ecological mechanisms (microbial and plant metabolism), maintenance requirements are minimized, and systems can be expected to have long operating lifetimes. Research needs include suitability of Martian soil and gravel for wetland systems, system sealing and liner options in a Mars Base, and wetland water quality efficiency under varying temperature and light regimes.  相似文献   

13.
MELISSA (Micro-Ecological Life Support System Alternative) has been conceived as a micro-organism based ecosystem intended as a tool for developing the technology for a future artificial ecosystem for long term space missions, as for example a lunar base. The driving element of MELISSA is the recovering of edible biomass from waste, CO2, and minerals with the use of sun light as energy source. In this publication, we focus our attention on the potential applications of MELISSA for a precursor mission to the Moon. We begin by a short review of the requirements for bioregenerative Life Support. We recall the concept of MELISSA and the theoretical and technical approaches of the study. We present the main results obtained since the beginning of this activity and taking into account the requirements of a mission to the Moon we propose a preliminary experiment based on the C cycle of the MELISSA loop.  相似文献   

14.
The problem of interaction between man and microorganisms in closed habitats is an inextricable part of the whole problem of co-existence between macro- and microorganisms. Concerning the support of human life in closed habitat, we can, conventionally, divide microorganisms, acting in life support system (LSS) into three groups: useful, neutral and harmful. The tasks, for human beings for optimal coexistence with microhabitants seem to be trivial: (1) to increase the activity of useful forms, (2) decrease the activity harmful forms, (3) not allow the neutral forms to become the harmful ones and even to help them to gain useful activity. The task of efficient management and control of microbial population's development in LSS highly depends on mission duration. As for short-term missions without recycling, the proper hygienic procedures are developed. For longer missions, the probability of transformation of the neutral forms into the harmful ones is becoming more dangerous. The LSS for long-term missions are to use cycling-recycling systems, including system with biological recycling. In these systems, microbial populations as regenerative link should be useful and active agents. Some problems of microbial populations control and management are discussed in the paper.  相似文献   

15.
Regenerative life support systems based on the use of biological material have been considered for inclusion in manned spacecraft since the early days of the United States space program. These biological life support systems are currently being developed by NASA in the Controlled Ecological Life Support System (CELSS) program. Because of the progress being achieved in the CELSS program, it is time to determine which space missions may profit from use of the developing technology. This paper presents the results of a study that was conducted to estimate where potential transportation cost savings could be anticipated by using CELSS technology for selected future manned space missions.

Six representative missions were selected for study from those included in NASA planning studies. The selected missions ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The paper presents the analytical study approach and describes the missions and systems considered, together with the benefits derived from CELSS when applicable.  相似文献   


16.
This article summarizes a conceptual design of a bioregenerative life support system for permanent lunar base or planetary exploration. The system consists of seven compartments – higher plants cultivation, animal rearing, human habitation, water recovery, waste treatment, atmosphere management, and storages. Fifteen kinds of crops, such as wheat, rice, soybean, lettuce, and mulberry, were selected as main life support contributors to provide the crew with air, water, and vegetable food. Silkworms fed by crop leaves were designated to produce partial animal nutrition for the crew. Various physical-chemical and biological methods were combined to reclaim wastewater and solid waste. Condensate collected from atmosphere was recycled into potable water through granular activated carbon adsorption, iodine sterilization, and trace element supplementation. All grey water was also purified though multifiltration and ultraviolet sterilization. Plant residue, human excrement, silkworm feces, etc. were decomposed into inorganic substances which were finally absorbed by higher plants. Some meat, ingredients, as well as nitrogen fertilizer were prestored and resupplied periodically. Meanwhile, the same amount and chemical composition of organic waste was dumped to maintain the steady state of the system. A nutritional balanced diet was developed by means of the linear programming method. It could provide 2721 kcal of energy, 375.5 g of carbohydrate, 99.47 g of protein, and 91.19 g of fat per capita per day. Silkworm powder covered 12.54% of total animal protein intakes. The balance of material flows between compartments was described by the system of stoichiometric equations. Basic life support requirements for crews including oxygen, food, potable and hygiene water summed up to 29.68 kg per capita per day. The coefficient of system material closure reached 99.40%.  相似文献   

17.
To study the effect of the space environment on plant growth including the reproductive growth and genetic aberration for a long-term plant life cycle, we have initiated development of a new type of facility for growing plants under microgravity conditions. The facility is constructed with subsystems for controlling environmental elements. In this paper, the concept of the facility design is outlined. Subsystems controlling air temperature, humidity, CO2 concentration, light and air circulation around plants and delivering recycled water and nutrients to roots are the major concerns. Plant experiments for developing the facility and future plant experiments with the completed facility are also overviewed. We intend to install this facility in the Japan Experiment Facility (JEM) boarded on the International Space Station.  相似文献   

18.
Sustainability is one of the most important criteria in the creation and evaluation of human life support systems intended for use during long space flights. The common feature of biological and physicochemical life support systems is that basically they are both catalytic. But there are two fundamental properties distinguishing biological systems: 1) they are auto-catalytic: their catalysts--enzymes of protein nature--are continuously reproduced when the system functions; 2) the program of every process performed by enzymes and the program of their reproduction are inherent in the biological system itself--in the totality of genomes of the species involved in the functioning of the ecosystem. Actually, one cell with the genome capable of the phenotypic realization is enough for the self-restoration of the function performed by the cells of this species in the ecosystem. The continuous microalgal culture of Chlorella vulgaris was taken to investigate quantitatively the process of self-restoration in unicellular algae population. Based on the data obtained, we proposed a mathematical model of the restoration process in a cell population that has suffered an acute radiation damage.  相似文献   

19.
Bioregenerative life support systems (BLSS) being considered for long duration space missions will operate with limited resupply and utilize biological systems to revitalize the atmosphere, purify water, and produce food. The presence of man-made materials, plant and microbial communities, and human activities will result in the production of volatile organic compounds (VOCs). A database of VOC production from potential BLSS crops is being developed by the Breadboard Project at Kennedy Space Center. Most research to date has focused on the development of air revitalization systems that minimize the concentration of atmospheric contaminants in a closed environment. Similar approaches are being pursued in the design of atmospheric revitalization systems in bioregenerative life support systems. in a BLSS one must consider the effect of VOC concentration on the performance of plants being used for water and atmospheric purification processes. In addition to phytotoxic responses, the impact of removing biogenic compounds from the atmosphere on BLSS function needs to be assessed. This paper provides a synopsis of criteria for setting exposure limits, gives an overview of existing information, and discusses production of biogenic compounds from plants grown in the Biomass Production Chamber at Kennedy Space Center.  相似文献   

20.
The long-held human dream of travel to the stars and planets will probably be realized within the next quarter century. Preliminary analyses by U.S. scientists and engineers suggests that a first trip to Mars could begin as early as 2016. A proposal by U.S.S.R. space planners has suggested that an effort involving the cooperation and collaboration of many nations could begin by 2011. Among the major considerations that must be made in preparation for such an excursion are solidification of the scientific, economic and philosophical rationales for such a trip made by humans, and realistic evaluations of current and projected technical capabilities. Issues in the latter category include launch and propulsion systems, long term system stability and reliability, the psychological and physiological consequences of long term exposure to the space environment, the development and use of countermeasures to deleterious human physiological responses to the space environment, and life support systems that are both capable of the immense journey and reliable enough to assure their continued operation for the duration of the voyage. Many of the issues important in the design of a life support system for a Mars trip are based on reasonably well understood data: the human requirements for food, oxygen and water. However, other issues are less well-defined, such as the demands that will be made on the system for personal cleanliness and hygiene, environmental cleanliness, prevention or reduction of environmental toxins, and psychological responses to the environment and to the diet. It is much too early to make final decisions about the characteristics of the long-duration life support system needed for travel to Mars, or for use on its surface. However, it is clear that life support systems will evolve during the next few decades form the relatively straightforward systems that are used on Shuttle and Soyuz, to increasingly more complex and regenerative systems. The Soviet Union has an operating life support system on Mir that can apparently evolve, and the United States is currently planning the one for Space Station Freedom that will use partial regeneration. It is essential to develop concepts now for life support systems on an advanced Space Station, the lunar outpost (to be launched in about 2004) and the lunar base. Such concepts will build on current technology and capabilities. But because of the variety of different technologies that can be developed, and the potential for coordinating the functions of very diverse sub-systems within the same life support system, the possibility of developing an efficient, reliable mixed process system is high. It is likely that a life support system for Mars transit and base will use a composite of physical, chemical, and biological processes. The purpose of this paper is to explore the potentially useful structural elements of a life support system for use on a Mars trip, and to identify the features that, at this time, appear to be most appropriate for inclusion in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号