首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Plants can provide a means for removing carbon dioxide (CO2) while generating oxygen (O2) and clean water for life support systems in space. To study this, 20 m2 stands of potato (Solanum tuberosum L.) plants were grown in a large (113 m3 vol.), atmospherically closed chamber. Photosynthetic uptake of CO2 by the stands was detected about 10 DAP (days after planting), after which photosynthetic rates rose rapidly as stand ground cover and total light interception increased. Photosynthetic rates peaked ca. 50 DAP near 45 μmol CO2 m−2 s−1 under 865 μmol m−2 s−1 PPF (average photosynthetic photon flux), and near 35 μmol CO2 m−2 s−1 under 655 μmol m−2 s−1 PPF. Short term changes in PPF caused a linear response in stand photosynthetic rates up to 1100 μmol m−2 s−1 PPF, with a light compensation point of 185 μmol m−2 s−1 PPF. Comparisons of stand photosynthetic rates at different CO2 concentrations showed a classic C3 response, with saturation occurring near 1200 μmol mol−1 CO2 and compensation near 100 μmol mol−1 CO2. In one study, the photoperiod was changed from 12 h light/12 h dark to continuous light at 58 DAP. This caused a decrease in net photosynthetic rates within 48 h and eventual damage (scorching) of upper canopy leaves, suggesting the abrupt change stressed the plants and/or caused feedback effects on photosynthesis. Dark period (night) respiration rates increased during early growth as standing biomass increased and peaked near 9 μmol CO2 m−2 s−1 ca. 50 DAP, after which rates declined gradually with age. Stand transpiration showed a rapid rise with canopy ground cover and peaked ca. 50 DAP near 8.9 L m−2 d−1 under 860 μmol m−2 s−1 PPF and near 6.3 L m−2 d−1 under 650 μmol m−2 s−1 PPF. Based on the best photosynthetic rates from these studies, approximately 25 m2 of potato plants under continuous cultivation would be required to support the CO2 removal and O2 requirements for one person.  相似文献   

2.
The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 °C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 μmol m−2 s−1 PAR and at a temperature of 25 °C. Plants were grown in Knop’s solution and solutions based on human wastes mineralized according to Yu.A. Kudenko’s method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 μmol m−2 s−1 PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 μmol m−2 s−1 to 1150 μmol m−2 s−1 enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown.  相似文献   

3.
Plants intended to be included in the photosynthesizing compartment of the bioregenerative life support system (BLSS) need to be studied in terms of both their production parameters under optimal conditions and their tolerance to stress factors that might be caused by emergency situations. The purpose of this study was to investigate tolerance of chufa (Cyperus esculentus L.) plants to the super-optimal air temperature of 45 ± 1 °C as dependent upon PAR (photosynthetically active radiation) intensity and the duration of the exposure to the stress factor. Chufa plants were grown hydroponically, on expanded clay, under artificial light. The nutrient solution was Knop’s mineral medium. Until the plants were 30 days old, they had been grown at 690 μmol m−2 s−1 PAR and air temperature 25 °C. Thirty-day-old plants were exposed to the temperature 45 °C for 6 h, 20 h, and 44 h at PAR intensities 690 μmol m−2 s−1 and 1150 μmol m−2 s−1. The exposure to the damaging air temperature for 44 h at 690 μmol m−2 s−1 PAR caused irreversible damage to PSA, resulting in leaf mortality. In chufa plants exposed to heat shock treatment at 690 μmol m−2 s−1 PAR for 6 h and 20 h, respiration exceeded photosynthesis, and CO2 release in the light was recorded. Functional activity of photosynthetic apparatus, estimated from parameters of pulse-modulated chlorophyll fluorescence in Photosystem 2 (PS 2), decreased 40% to 50%. After the exposure to the stress factor was finished, functional activity of PSA recovered its initial values, and apparent photosynthesis (Papparent) rate after a 20-h exposure to the stress factor was 2.6 times lower than before the elevation of the temperature. During the first hours of plant exposure to the temperature 45 °C at 1150 μmol m−2 s−1 PAR, respiration rate was higher than photosynthesis rate, but after 3–4 h of the exposure, photosynthetic processes exceeded oxidative ones and CO2 absorption in the light was recorded. At the end of the 6-h exposure, Papparent rate was close to that recorded prior to the exposure, and no significant changes were observed in the functional activity of PSA. At the end of the 20-h exposure, Papparent rate was close to its initial value, but certain parameters of the functional activity of PSA decreased 25% vs. their initial values. During the repair period, the parameters of external gas exchange recovered their initial values, and parameters of pulse-modulated chlorophyll fluorescence were 20–30% higher than their initial values. Thus, exposure of chufa plants to the damaging temperature of the air for 20 h did not cause any irreversible damage to the photosynthetic apparatus of plants at either 690 μmol m−2 s−1 or 1150 μmol m−2 s−1 PAR, and higher PAR intensity during the heat shock treatment enhanced heat tolerance of the plants.  相似文献   

4.
An experiment utilizing cowpeas (Vigna unguiculata L.), pinto beans (Phaseolus vulgaris L.) and Apogee ultra-dwarf wheat (Triticum sativa L.) was conducted in the soil-based closed ecological facility, Laboratory Biosphere, from February to May 2005. The lighting regime was 13 h light/11 h dark at a light intensity of 960 μmol m−2 s−1, 45 mol m−2 day−1 supplied by high-pressure sodium lamps. The pinto beans and cowpeas were grown at two different planting densities. Pinto bean production was 341.5 g dry seed m−2 (5.42 g m−2 day−1) and 579.5 dry seed m−2 (9.20 g m−2 day−1) at planted densities of 32.5 plants m−2 and 37.5 plants m−2, respectively. Cowpea yielded 187.9 g dry seed m−2 (2.21 g m−2 day−1) and 348.8 dry seed m−2 (4.10 g m−2 day−1) at planted densities of 20.8 plants m−2 and 27.7 plants m−2, respectively. The crop was grown at elevated atmospheric carbon dioxide levels, with levels ranging from 300–3000 ppm daily during the majority of the crop cycle. During early stages (first 10 days) of the crop, CO2 was allowed to rise to 7860 ppm while soil respiration dominated, and then was brought down by plant photosynthesis. CO2 was injected 27 times during days 29–71 to replenish CO2 used by the crop during photosynthesis. Temperature regime was 24–28 °C day/deg 20–24 °C night. Pinto bean matured and was harvested 20 days earlier than is typical for this variety, while the cowpea, which had trouble establishing, took 25 days more for harvest than typical for this variety. Productivity and atmospheric dynamic results of these studies contribute toward the design of an envisioned ground-based test bed prototype Mars base.  相似文献   

5.
Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for Svet space greenhouse using Cree® XLamp® 7090 XR light-emitting diodes (LEDs) was developed. Monochromic LEDs emitting in the red, green, and blue regions of the spectrum were used. The LED-LM contains 36 LED spots – 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. Digital Multiplex Control Unit controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0–400 μmol m−2 s−1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with plants – lettuce and radicchio were carried out at 400 μmol m−2 s−1 PPFD (high light – HL) and 220 μmol m−2 s−1 PPFD (low light – LL) and 70% red, 20% green and 10% blue light composition. To evaluate the efficiency of photosynthesis, in vivo modulated chlorophyll fluorescence was measured by Pulse Amplitude Modulation (PAM) fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II (ΦPSII) and non-photochemical quenching (NPQ) were calculated. Both lettuce and radicchio plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by ΦPSII. Accelerated rise in NPQ in both LL grown plants was observed, while steady state NPQ values were higher in LL grown lettuce plants and did not differ in LL and HL grown radicchio plants. The extent of photoinhibition process in both plants was evaluated by changes in malonedialdehyde (MDA) concentration, peroxidase (POX) activity and hydrogen peroxide (H2O2) content. Accumulation of high levels of MDA and increased POX activity correlating with decreased H2O2 content were observed in both HL grown plants. These biochemical indicators revealed higher sensitivity to photodamage in HL grown lettuce and radicchio plants. LL conditions resulted in more effective functioning of PSII than HL when lettuce and radicchio plants were grown at 70% red, 20% green and 10% blue light composition.  相似文献   

6.
The effects of the factorial combination of two light intensities (200 and 800 μmol m−2 s−1) and two CO2 concentrations (360 and 800 ppm) were studied on the productivity and nutritional quality of spinach (Spinacia oleracea L.) grown under controlled environment. After 6 weeks within a growth chamber, spinach plants were sampled and analyzed for productivity and quality. There were no statistically significant interactions between the effects of light and CO2 for all of the variables studied, except for the nitrate and oxalic acid content of the leaves. High light and high CO2 independently one from the other, promoted spinach productivity, and the accumulation of ascorbic acid, while their interactive effect limited the accumulation of nitrate and oxalic acid in the spinach leaves. The results highlight the importance of considering the effects of the interaction among environmental variables on maximizing production and the nutritional quality of the food when cultivating and modeling the plant response in controlled environment systems such as for bioregenerative life support.  相似文献   

7.
NASA’s Biomass Production Chamber (BPC) at Kennedy Space Center was decommissioned in 1998, but several crop tests were conducted that have not been reported in the open literature. These include several monoculture studies with wheat, soybean, potato, lettuce, and tomato. For all of these studies, either 10 or 20 m2 of plants were grown in an atmospherically closed chamber (113 m3 vol.) using a hydroponic nutrient film technique along with elevated CO2 (1000 or 1200 μmol mol−1). Canopy light (PAR) levels ranged from 17 to 85 mol m−2 d−1 depending on the species and photoperiod. Total biomass (DM) productivities reached 39.6 g m−2 d−1 for wheat, 27.2 g m−2 d−1 for potato, 19.6 g m−2 d−1 for tomato, 15.7 g m−2 d−1 for soybean, and 7.7 g m−2 d−1 for lettuce. Edible biomass (DM) productivities reached 18.4 g m−2 d−1 for potato, 11.3 g m−2 d−1 for wheat, 9.8 g m−2 d−1 for tomato, 7.1 g m−2 d−1 for lettuce, and 6.0 g m−2 d−1 for soybean. The corresponding radiation (light) use efficiencies for total biomass were 0.64 g mol−1 PAR for potato, 0.59 g DM mol−1 for wheat, 0.51 g mol−1 for tomato, 0.46 g mol−1 for lettuce, and 0.43 g mol−1 for soybean. Radiation use efficiencies for edible biomass were 0.44 g mol−1 for potato, 0.42 g mol−1 for lettuce, 0.25 g mol−1 for tomato, 0.17 g DM mol−1 for wheat, and 0.16 g mol−1 for soybean. By initially growing seedlings at a dense spacing and then transplanting them to the final production area could have saved about 12 d in each production cycle, and hence improved edible biomass productivities and radiation use efficiencies by 66% for lettuce (to 11.8 g m−2 d−1 and 0.70 g mol−1), 16% for tomato (to 11.4 g m−2 d−1and 0.29 g mol−1), 13% for soybean (to 6.9 g m−2 d−1 and 0.19 g mol−1), and 13% for potato (to 20.8 g m−2 d−1 and 0.50 g mol−1). Since wheat was grown at higher densities, transplanting seedlings would not have improved yields. Tests with wheat resulted in a relatively low harvest index of 29%, which may have been caused by ethylene or other organic volatile compounds (VOCs) accumulating in the chamber. Assuming a higher harvest index of 40% could be achieved by scrubbing VOCs, productivity of wheat seed could have been improved nearly 40% to 15.8 g m−2 d−1 and edible biomass radiation use efficiency to 0.30 g mol−1.  相似文献   

8.
A Manned Mars Mission scenario had been developed in frame of the Project 1172 supported International Science & Technology Center in Moscow. The Mars transit vehicle (MTV) supposed to have a crew of 4–6 with Pilot Laboratory compartment volume of 185 m3 and with inner diameter of 4.1 m. A vegetable production facility with power consumption up to 10 kW is being considered as a component of the life support system to supply crew members by fresh vegetables during the mission. Proposed design of conveyor-type plant growth facility (PGF) comprised of 4-modules. Each module has a cylindrical planting surface and spiral cylindrical LED assembly to provide a high specific productivity relative to utilized onboard resources. Each module has a growth chamber that will be from 0.7 m to 1.5 m in length, and a crop illuminated area from 1.7 m2 to 4.0 m2. Leafy crops (cabbage, lettuce, spinach, chard, etc.) have been selected for module 1, primarily because of the highest specific productivity per consumed resources. Dietitians have recommended also carrot crop for module 2, pepper for module 3 and tomato for module 4. The maximal total PGF light energy estimated as 1.16 kW and total power consumption as about 7 kW. The module 1 characteristics have been calculated using own experimental data, information from the best on ground plant growth experiments with artificial light were used to predict crop productivity and biomass composition in the another modules. 4-module PGF could produce nearly 0.32 kg per crew member per day of fresh edible biomass, which would be about 50% of recommended daily vegetable supplement. An average crop harvest index is estimated as 0.75. The MTV food system could be entirely closed in terms of vitamins C and A with help of the PGF. In addition the system could provide 10–25% of essential minerals and vitamins of group B, and about 20% of food fibers. The present state of plant growth technology allows formulating of requirements specification for the flight-qualified modules.  相似文献   

9.
Vegetable cultivation plays a crucial role in dietary supplements and psychosocial benefits of the crew during manned space flight. Here we developed a ground-based prototype of horn-type sequential vegetable production facility, named Horn-type Producer (HTP), which was capable of simulating the microgravity effect and the continuous cultivation of leaf–vegetables on root modules. The growth chamber of the facility had a volume of 0.12 m3, characterized by a three-stage space expansion with plant growth. The planting surface of 0.154 m2 was comprised of six ring-shaped root modules with a fibrous ion-exchange resin substrate. Root modules were fastened to a central porous tube supplying water, and moved forward with plant growth. The total illuminated crop area of 0.567 m2 was provided by a combination of red and white light emitting diodes on the internal surfaces. In tests with a 24-h photoperiod, the productivity of the HTP at 0.3 kW for lettuce achieved 254.3 g eatable biomass per week. Long-term operation of the HTP did not alter vegetable nutrition composition to any great extent. Furthermore, the efficiency of the HTP, based on the Q-criterion, was 7 × 10−4 g2 m−3 J−1. These results show that the HTP exhibited high productivity, stable quality, and good efficiency in the process of planting lettuce, indicative of an interesting design for space vegetable production.  相似文献   

10.
Four soybean cultivars (‘Atlantic’, ‘Cresir’, ‘Pr91m10’ and ‘Regir’), selected through a theoretical procedure as suitable for cultivation in BLSS, were evaluated in terms of growth and production. Germination percentage and Mean Germination Time (MGT) were measured. Plants were cultivated in a growth chamber equipped with a recirculating hydroponic system (Nutrient Film Technique). Cultivation was performed under controlled environmental conditions (12 h photoperiod, light intensity 350 μmol m−2 s−1, temperature regime 26/20 °C light/dark, relative humidity 65–75%). Fertigation was performed with a standard Hoagland solution, modified for soybean specific requirements, and EC and pH were kept at 2.0 dS m−1 and 5.5 respectively.  相似文献   

11.
Long-duration manned space missions mandate the development of a sustainable life support system and effective countermeasures against damaging space radiation. To mitigate the risk of inevitable exposure to space radiation, cultivation of fresh fruits and vegetables rich in antioxidants is an attractive alternative to pharmacological agents. However it has yet to be established whether antioxidant properties of crops can be preserved or enhanced in a space environment where environmental conditions differ from that which plants have acclimated to on earth. Scallion (Allium fistulosum) rich in antioxidant vitamins C and A, and flavonoids was used as a model plant to study the impact of a range of CO2 concentrations and light intensities that are likely encountered in a space habitat on food quality traits. Scallions were hydroponically grown in controlled environmental chambers under a combination of 3 CO2 concentrations of 400, 1200 and 4000 μmol mol−1 and 3 light intensity levels of 150, 300, 450 μmol m−2 s−1. Total antioxidant activity (TAA) of scallion extracts was determined using a radical cation scavenging assay. Both elevated CO2 and increasing light intensity enhanced biomass accumulation, but effects on TAA (based on dry weight) differed. TAA was reduced for plants grown under elevated CO2, but remained unchanged with increases in light intensity. Elevated CO2 stimulated greater biomass production than antioxidants, while an increase in photosynthetic photo flux promoted the synthesis of antioxidant compounds at a rate similar to that of biomass. Consequently light is a more effective stimulus than CO2 for antioxidant production.  相似文献   

12.
Higher plants, as one of the essential biological components of CELSS, can supply food, oxygen and water for human crews during future long-duration space missions and Lunar/Mars habitats. In order to select suitable leaf vegetable varieties for our CELSS Experimental Facility (CEF), five varieties of lettuce (“Nenlvnaiyou”, “Dasusheng”, “Naichoutai”, “Dongfangkaixuan” and “Siji”), two of spinach (“Daye” and “Quanneng”), one of rape (“Jingyou No. 1”) and one of common sowthistle were grown and compared on the basis of edible biomass, and nutrient content. In addition, two series of experiments were conducted to study single leaf photosynthetic rates and transpiration rates at 30 days after planting, one which used various concentrations of CO2 (500, 1000, 1500 and 2000 μmol mol−1) and another which used various light intensities (100, 300, 500 and 700 μmol m−2 s−1). Results showed that lettuce cvs. “Nenlvnaiyou”, “Siji” and “Dasusheng” produced higher yields of edible biomass; common sowthisle would be a good source of β-carotene for the diet. Based on the collective findings, we selected three varieties of lettuce (“Nenlvnaiyou”, “Dasusheng” and “Siji”) and one of common sowthistle as the candidate crops for further research in our CEF. In addition, elevated CO2 concentration increased the rates of photosynthesis and transpiration, and elevated light intensity increased the rate of photosynthesis for these varieties. These results can be useful for determining optimal conditions for controlling CO2 and water fluxes between the crops and the overall CELSS.  相似文献   

13.
Minimizing energy consumption and maximizing crop productivity are major challenges to growing plants in Bioregenerative Life Support System (BLSS) for future long-term space mission. As a primary source of energy, light is one of the most important environmental factors for plant growth. The purpose of this study is to investigate the effects of low light intensity at different stages on growth, pigment composition, photosynthetic efficiency, biological production and antioxidant defence systems of wheat (Triticum aestivum L.) cultivars during ontogenesis. Experiments were divided into 3 intensity-controlled stages according to growth period (a total of 65 days): seedling stage (first 20 days), heading and flowering stage (middle 30 days) and grain filling stage (last 15 days). Initial light condition of the control was 420 μmol m−2 s−1 and the light intensity increased with the growth of wheat plants. The light intensities of group I and II at the first stage and the last stage were adjusted to the half level of the control respectively. For group III, the first and the last stage were both adjusted to half level of the control. During the middle 30 days, all treatments were kept the same intensity. The results indicated that low-light treatment at seedling stage, biomass, nutritional contents, components of inedible biomass and healthy index (including peroxidase (POD) activity, malondialdehyde (MDA) and proline content) of wheat plants have no significant difference to the control. Furthermore, unit kilojoule yield of group I reached 0.591 × 10−3 g/kJ and induced the highest energy efficiency. However, low-light treatment at grain filling stage affected the final production significantly.  相似文献   

14.
The paper presents a conceptual configuration of the lunar base bioregenerative life support system (LBLSS), including soil-like substrate (SLS) for growing plants. SLS makes it possible to combine the processes of plant growth and the utilization of plant waste. Plants are to be grown on SLS on the basis of 20 kg of dry SLS mass or 100 kg of wet SLS mass per square meter. The substrate is to be delivered to the base ready-made as part of the plant growth subsystem. Food for the crew was provided by prestored stock 24% and by plant growing system 76%. Total dry weight of the food is 631 g per day (2800 kcal/day) for one crew member (CM). The list of candidate plants to be grown under lunar BLSS conditions included 14 species: wheat, rice, soybean, peanuts, sweet pepper, carrots, tomatoes, coriander, cole, lettuce, radish, squash, onion and garlic. From the prestored stock the crew consumed canned fish, iodinated salt, sugar, beef sauce and seafood sauce. Our calculations show that to provide one CM with plant food requires the area of 47.5 m2. The balance of substance is achieved by the removal dehydrated urine 59 g, feces 31 g, food waste 50 g, SLS 134 g, and also waters 86 g from system and introduction food 236 g, liquid potassium soap 4 g and mineral salts 120 g into system daily. To reduce system setup time the first plants could be sowed and germinated to a certain age on the Earth.  相似文献   

15.
A CELSS Experimental Facility was developed two years ago. It contains a volume of about 40.0 m3 and a cultivating area of about 8.4 m2; its interior atmospheric parameters such as temperature, relative humidity, oxygen concentration, carbon dioxide concentration, total pressure, lighting intensity, photoperiod, water content in the growing-matrix, CO2-added accumulative amount, O2-released accumulative amount and ethylene concentration are all controlled and logged automatically and effectively; its growing system consists of two rows of racks along its left-and-right sides separately, each side holds two upper-and-lower layers, and the vertical distance of each growing bed can be adjusted automatically and independently; lighting sources consist of both red (95%) and blue (5%) light-emitting diodes (LED), and the average lighting intensity of each lamp bank at 20-cm distance position under it, reaches to 255.0 μmol m−2 s−1. After that, demonstrating tests were carried out and were finally followed by growing lettuce in the facility. The results showed that all subsystems operated well and all parameters were controlled automatically and efficiently. The lettuce plants in the system could grow much well. Successful development of this system laid a necessary foundation for future larger-scale studies on CELSS integration technique.  相似文献   

16.
The time course of gravicurvature of 3-day-old wheat (Triticum aestivum L., cv. Apogee) coleoptiles and 7-day-old wheat stems were studied in darkness and under red and red-blue light illumination after declination from the vertical at various angles. The experiments showed that the shortest gravitropic curvature corresponded to 30° initial angle of gravistimulation (IAG). The time course became longer as the IAG increased and with plant age. The effects of unilateral red (660 nm) and red-blue light (660 nm; 470 nm) at photosynthetic photon flux (PPF) of 30 μmol m−2 s−1 on the curvature of 3-day-old coleoptiles were evaluated. Red light did not produce phototropic bending of wheat coleoptiles in contrast with red-blue light. The analysis of experimental data showed that the curvature in response to a gravitropic stimulus or to combined gravity-light stimuli were not statistically different. Time course of gravitropic curvature were used to determine the acceptable crop rotation rate around the horizontal axis. Approximation of stem bending to a linear dynamic system described by a first-order aperiodic element with a lag allowed the determination of the dependence of the amplitude of apex oscillations on the rate of horizontal rotation under 1-g conditions. The calculated lowest minimal rotation rate (MRR) minimizing the gravitropic effects on wheat was about 1 revolution per hour (rph). Rotating the plant growth chamber (PGC) at a rate of more than MRR eliminated the effect of gravitropic curvature.  相似文献   

17.
The main obstacle to using mineralized human solid and liquid wastes as a source of mineral elements for plants cultivated in bio-technical life support systems (BLSS) is that they contain NaCl. The purpose of this study is to determine whether mineralized human wastes can be used to prepare the nutrient solution for long-duration conveyor cultivation of uneven-aged wheat and Salicornia europaea L. plant community. Human solid and liquid wastes were mineralized by the method of “wet incineration” developed by Yu. Kudenko. They served as a basis for preparing the solutions that were used for conveyor-type cultivation of wheat community represented by 5 age groups, planted with a time interval of 14 days. Wheat was cultivated hydroponically on expanded clay particles. To reduce salt content of the nutrient solution, every two weeks, after wheat was harvested, 12 L of solution was removed from the wheat irrigation tank and used for Salicornia europaea cultivation in water culture in a conveyor mode. The Salicornia community was represented by 2 age groups, planted with a time interval of 14 days. As some portion of the nutrient solution used for wheat cultivation was regularly removed, sodium concentration in the wheat irrigation solution did not exceed 400 mg/L, and mineral elements contained in the removed portion were used for Salicornia cultivation. The experiment lasted 4 months. The total wheat biomass productivity averaged 30.1 g · m−2 · day−1, and the harvest index amounted to 36.8%. The average productivity of Salicornia edible biomass on a dry weight basis was 39.3 g · m−2 · day−1, and its aboveground mass contained at least 20% of NaCl. Thus, the proposed technology of cultivation of wheat and halophyte plant community enables using mineralized human wastes as a basis for preparing nutrient solutions and including NaCl in the mass exchange of the BLSS; moreover, humans are supplied with additional amounts of leafy vegetables.  相似文献   

18.
Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada’s contribution of the Higher Plant Compartment of the European Space Agency’s MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity applications). To advance the technical readiness for the proposed lunar missions, including a lunar plant growth lander, lunar “salad machine” (i.e. small scale plant production unit) and a full scale lunar plant production system, a suite of terrestrial developments and analogue systems are proposed. As has been successfully demonstrated by past Canadian advanced life support activities, terrestrial technology transfer and the development of highly qualified personnel will serve as key outputs for Canadian advanced life support system research programs. This approach is designed to serve the Canadian greenhouse industry by developing compliance measures for mitigating environmental impact, reducing labour and energy costs as well as improving Canadian food security, safety and benefit northern/remote communities.  相似文献   

19.
A categorized water usage study was undertaken at the Flashline Mars Arctic Research Station on Devon Island, Nunavut in the High Canadian Arctic. This study was conducted as part of a long duration four-month Mars mission simulation during the summer of 2007. The study determined that the crew of seven averaged 82.07 L/day over the expedition (standard deviation 22.58 L/day). The study also incorporated a Mars Time Study phase which determined that an average of 12.12 L/sol of water was required for each crewmember. Drinking, food preparation, hand/face, oral, dish wash, clothes wash, shower, shaving, cleaning, engineering, science, plant growth and medical water were each individually monitored throughout the detailed study phases. It was determined that implementing the monitoring program itself resulted in an approximate water savings of 1.5 L/day per crewmember. The seven person crew averaged 202 distinct water draws a day (standard deviation 34) with high water use periods focusing around meal times. No statistically significant correlation was established between total water use and EVA or exercise duration. Study results suggest that current crew water utilization estimates for long duration planetary surface stays are more than two times greater than that required.  相似文献   

20.
The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plant cultivation in a biological life support system (BLSS). Plants that are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitaminny variety, were used. The plants were grown hydroponically on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During plant growth, a determined amount of human mineralized waste was added daily to the nutrient solution. The nutrient solution remained unchanged throughout the vegetation period. Estimated plant requirements for macro-elements were based on a total biological productivity of 0.04 kg day−1 m−2. As the plant requirements for potassium exceeded the potassium content of human waste, a water extract of wheat straw containing the required amount of potassium was added to the nutrient solution. The Knop’s solution was used in the control experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号