首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 391 毫秒
1.
The representation of the topside ionosphere (the region above the F2 peak) is critical because of the limited experimental data available. Over the years, a wide range of models have been developed in an effort to represent the behaviour and the shape of the electron density (Ne) profile of the topside ionosphere. Various studies have been centred around calculating the vertical scale height (VSH) and have included (a) obtaining VSH from Global Positioning System (GPS) derived total electron content (TEC), (b) calculating the VSH from ground-based ionosonde measurements, (c) using topside sounder vertical Ne profiles to obtain the VSH. One or a combination of the topside profilers (Chapman function, exponential function, sech-squared (Epstein) function, and/or parabolic function) is then used to reconstruct the topside Ne profile. The different approaches and the modelling techniques are discussed with a view to identifying the most adequate approach to apply to the South African region’s topside modelling efforts. The IRI-2001 topside model is evaluated based on how well it reproduces measured topside profiles over the South African region. This study is a first step in the process of developing a South African topside ionosphere model.  相似文献   

2.
This paper reviews the data base and empirical models that are available for the global representation of electron density in the topside ionosphere. Topside sounder and incoherent scatter measurements are the prime data sources. We assess their data volume and compatibility. Several empirical models are discussed (IRI, Bent, SLIM, and FAIM) and their specific characteristics and differences are pointed out. Global and temporal trends as predicted by these different models are compared and contrasted with measured results. Most models use vertical height rather than a field-aligned height coordinate, although it is well known that topside electrons are confined to moving along magnetic field lines. We examine several magnetic coordinate systems and evaluate their merits for empirical modelling.  相似文献   

3.
Incoherent scatter radar (ISR) is the most powerful ground-based measurement facility to study the ionosphere. The plasma lines are not routinely detected by the incoherent scatter radar due to the low intensity, which falls below the measured spectral noise level of the incoherent scatter radar. The plasma lines are occasionally enhanced by suprathermal electrons through the Landau damping process and detectable to the incoherent scatter radar. In this study, by using the European Incoherent Scatter Association (EISCAT) UHF incoherent scatter radar, the experiment observation presents that the enhanced plasma lines were observed. These plasma lines were considered as manifest of the suprathermal electrons generated by the high-frequency heating wave during the ionospheric modification. The electron density profile is also obtained from the enhanced plasma lines. This study can be a promising technique for obtaining the accurate electron density during ionospheric modification experiment.  相似文献   

4.
Low Earth Orbiting satellites carrying a dual frequency GPS receiver onboard offer a unique opportunity to remote sensing of the global ionosphere on a continuous basis. No other profiling technique unifies profiling through the entire F2-layer with global coverage. The FORMOSAT-3/COSMIC data can make a positive impact on the global ionosphere study providing essential information about the height electron density distribution and particularly over regions that are not accessible with ground-based measuring instruments such as ionosondes and GPS dual frequency receivers. Therefore, it is important to verify occultation profiles with other techniques and to obtain experience in the reliability of their derivation. In the given study we present results of comparison of the electron density profiles derived from radio occultation measurements on-board FS-3/COSMIC and from the Kharkov incoherent scatter radar sounding.  相似文献   

5.
从等离子体运动方程出发, 利用COSMIC星座的掩星数据, 借助相关经验模式, 计算了太阳活动低年顶部电离层O+场向扩散速度和扩散通量, 并分析了其全球分布和日变化特征. 结果表明, 白天等离子体扩散速度的方向随高度增加由向下(极向)逐步变为向上(赤道向), 方向转变的高度一般在hmF2+80 km以下. 在白天较高高度, 南北磁纬10o ~20 o存在着向上方向的最大扩散速度和扩散通量; 而在夜间, 南北磁纬30o~40 o存在向下方向的最大扩散速度和扩散通量. 在分点, 南北半球的扩散通量和扩散速度大致对称; 而在至点, 扩散通量存在着明显的南北半球不对称现象. 另外, 不同纬度的扩散速度有着不同的日变化特征.   相似文献   

6.
For obvious reasons the ionosphere of the polar cap, surrounded by the auroral zone, is only poorly investigated. Even ionosonde data are very scant from geomagnetic latitudes beyond 70°. Since 1997 the European incoherent scatter radar facility EISCAT has an additional installation on Svalbard and has been providing electron density data nearly continuously ever since. These measurements which mainly cover the E- and F-regions are supplemented by rocket data from Heiss Island at a comparable magnetic latitude; these data are more sporadic, but cover lower altitudes and densities. A provisional, steady-state, neural network-based model is presented which uses the data of both sites.  相似文献   

7.
The topside ionosphere scale height extracted from two empirical models are compared in the paper. The Topside Sounder Model (TSM) provides directly the scale height (HT), while the incoherent scatter radar ionospheric model (ISRIM) provides electron density profiles and its scale height (HR) is determined by the lowest gradient in the topside part of the profile. HT and HR are presented for 7 ISR locations along with their dependences on season, local time, solar flux F10.7, and geomagnetic index ap. Comparison reveals that HT values are systematically lower than respective HR values as the average offset for all 7 stations is 55 km. For the midlatitude stations Arecibo, Shigaraki, and Millstone Hill this difference is reduced to 43 km. The range of variations of HR is much larger than that of HT, as the HT range overlaps the lower part of the HR range. Dependences on ap, DoY and LT are much stronger in the ISRIM than in TSM. This results in much larger values of HR at higher ap. Diurnal amplitude of HR is much larger than that of HT, with large maximum of HR at night. The present comparison yields the conclusion that the ISR measurements provide steeper topside Ne profiles than that provided by the topside sounders.  相似文献   

8.
The incoherent scatter radar (ISR) facility in Kharkov, Ukraine (49.6°N, 36.3°E) measures vertical profiles of electron density, electron and ion temperature, and ion composition of the ionospheric plasma up to 1100 km altitude. Acquired measurements constitute an accurate ionospheric reference dataset for validation of the variety of models and alternative measurement techniques. We describe preliminary results of comparing the Kharkov ISR profiles to the international reference ionosphere (IRI), an empirical model recognized for its reliable representation of the monthly-median climatology of the density and temperature profiles during quiet-time conditions, with certain extensions to the storm times. We limited our comparison to only quiet geomagnetic conditions during the autumnal equinoxes of 2007 and 2008. Overall, we observe good qualitative agreement between model and data both in time and with altitude. Magnitude-wise, the measured and modeled electron density and plasma temperatures profiles appear different. We discovered that representation accuracy improves significantly when IRI is driven by observed-averaged values of the solar activity index rather than their predictions. This result motivated us to study IRI performance throughout protracted solar minimum of the 24th cycle. The paper summarizes our observations and recommendations for optimal use of the IRI.  相似文献   

9.
We have studied the topside nighttime ionosphere of the low latitude region using data obtained from DMSP F15, ROCSAT-1, KOMPSAT-1, and GUVI on the TIMED satellite for the period of 2000–2004, during which solar activity decreased from its maximum. As these satellites operated at different altitudes, we were able to discriminate altitude dependence of several key ionospheric parameters on the level of solar activity. For example, with intensifying solar activity, electron density was seen to increase more rapidly at higher altitudes than at lower altitudes, implying that the corresponding scale height also increased. The density increased without saturation at all observed altitudes when plotted against solar EUV flux instead of F10.7. The results of the present study, as compared with those of previous studies for lower altitudes, indicate that topside vertical scale height increases with altitude and that, when solar activity increases, topside vertical scale height increases more rapidly at higher altitudes than at lower altitudes. Temperature also increased more rapidly at higher altitudes than at lower altitudes as solar activity increased. In addition, the height of the F2 peak was seen to increase with increasing solar activity, along with the oxygen ion fraction measured above the F2 peak. These results confirm that the topside ionosphere rises and expands with increasing solar activity.  相似文献   

10.
11.
The paper describes the technique that has been implemented to model the electron density distribution above and below the F2 peak making use of only the profiles obtained from the INTERCOSMOS-19 topside ionograms. Each single profile from the satellite height to the ionosphere peak has been fitted by a semi-Epstein layer function of the type used in the DGR model with shape factor variable with altitude. The topside above the satellite height has been extrapolated to match given values of plasmaspheric electron densities to obtain the full topside profile. The bottomside electron density has been calculated by using the maximum electron density and its altitude estimated from the topside ionogram as input for a modified version of the DGR derived profiler that uses model values for the foF1 and foE layers of the ionosphere. Total electron content has also been calculated. Longitudinal cross sections of vertical profiles from latitudes 50° N to 50° S latitude are shown for low and high geomagnetic activity. These cross sections indicate the equatorial anomaly effect and the changes of the shape of low latitude topside ionosphere during geomagnetic active periods. These results and the potentiality of the technique are discussed.  相似文献   

12.
The height structure of TID characteristics is studied on the base of the electron density profiles measured by two beams of the incoherent scatter radar and DPS-4 ionosonde. The height profiles of the TID propagation characteristics are obtained by means of cross-correlation and spectrum analysis of the radar and ionosonde data. The noticeable height variability of the TID parameters is observed. The variability is explained by interference of several TIDs. The obtained TID propagation characteristics are compared with known results of the TID studies.  相似文献   

13.
During 2008, the solar activity is extremely low. The satellite observations show that the ionospheric height and electron density is much lower than the predictions by the international reference ionosphere (IRI) model. In this paper, we compared the slant total electron content (TEC) observed by the COSMIC satellites during 2008 with the IRI model results. It is found that the IRI model with IRI2001 and IRI2001 Cor. topside options will always overestimate the electron density in both lower and higher altitudes. But the rest two topside options (NeQuick, and TTS) tend to overestimate the electron density in the F layer and underestimate it in the topside altitudes. The switch altitude between overestimation and underestimation and the latitude-local time distribution of the model deviation depend on the topside option. The current investigation might be useful for the model improvement as well as data assimilation work based on the IRI model and the LEO TEC data.  相似文献   

14.
High resolution electron density measurements from Arecibo incoherent scatter (i.s.) radar are used to make a detailed study of the E-F valley. Features of the important valley parameters like height, width and depth are examined. These features are then compared with the available theoretical and empirical models. The depth of the valley obtained from the empirical models agrees with i.s. measurements for near-noon periods, but disagrees with these measurements for pre-noon and post-noon periods. Further, the i.s. measurements indicate that E-F valley is rather small during daytime as compared to models which give larger width. During the night, the valley is quite wide and deep but the presence of sporadic-E (Es) contaminates the Ne-h profiles observed with the i.s. radar. As a result the valley parameters cannot be determined unambiguously during the night.  相似文献   

15.
The dispersive nature of the ionosphere makes it possible to measure its total electron content (TEC). Thus Global Positioning System, which uses dual-frequency radio signals, is an ideal system to measure TEC. When data from an ionosonde situated in polar region was observed, the height of an approximated thin shell of electrons (shell height) used in GPS studies was seen not to be fixed but rather changing with time. Here we introduce a new method in which we included the varying shell heights derived from the ionosonde to map the slant total electron content from GPS to obtain a more precise vertical total electron content of the ionosphere contrary to some previous methods which used fixed shell heights. In this paper we also compared the ionosonde derived TEC with the GPS derived vertical TEC (vTEC) values. These GPS vTEC values were obtained from GPS slant TEC (sTEC) measurements using both fixed shell height and varying shell heights (from ionosonde measurements). For the polar regions, the varying shell height approach produced better results than the fixed shell height and compared to exponential function, Chapman function seems to be a better function to model the topside ionosphere.  相似文献   

16.
The diurnal, seasonal and latitudinal variations of the electron temperature in the Earth‘s topside ionosphere during relatively low solar activity period of 2005 – 2008 are investigated. In order to examine seasonal variations and morphology of the topside ionospheric plasma temperature, CNES micro-satellite DEMETER ISL data are used. Presented study is oriented on the dataset gathered in 2005 and 2008. Within conducted analysis, global maps of electron temperature for months of equinoxes and solstices have been developed. Furthermore, simultaneous studies on two-dimensional time series based on DEMETER measurements and predictions obtained with the IRI-2012 model supply examination of the topside ionosphere during recent deep solar minimum. Comparison with the IRI-2012 model reveals discrepancies between data and prediction, that are especially prominent during the periods of very low solar activity.  相似文献   

17.
A method is proposed for reconstructing the electron density profiles N(h) of the IRI model from ionograms of topside satellite sounding of the ionosphere. An ionograms feature is the presence of traces of signal reflection from the Earth's surface. The profile reconstruction is carried out in two stages. At the first stage, the N(h) –profile is calculated from the lower boundary of the ionosphere to the satellite height (total profile) by the method presented in this paper using the ionogram. In this case, the monotonic profile of the topside ionosphere is calculated by the classical method. The profile of the inner ionosphere is represented by analytical functions, the parameters of which are calculated by optimization methods using traces of signal reflection, both from the topside ionosphere and from the Earth. At the second stage, the profile calculated from the ionogram is used to obtain the key parameters: the height of the maximum hmF2 of the F2 layer, the critical frequency foF2, the values of B0 and B1, which determine the profile shape in the F region in the IRI model. The input of key parameters, time of observation, and coordinates of sounding into the IRI model allows obtaining the IRI-profile corrected to real experimental conditions. The results of using the data of the ISIS-2 satellite show that the profiles calculated from the ionograms and the IRI profiles corrected from them are close to each other in the inner ionosphere and can differ significantly in the topside ionosphere. This indicates the possibility of obtaining a profile in the inner ionosphere close to the real distribution, which can significantly expand the information database useful for the IRTAM (IRI Realmax Assimilative Modeling) model. The calculated profiles can be used independently for local ionospheric research.  相似文献   

18.
The variations of plasma density in topside ionosphere during 23rd/24th solar cycle minimum attract more attentions in recently years. In this analysis, we use the data of electron density (Ne) from DEMETER (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions) satellite at the altitude of 660–710 km to investigate the solstitial and equinoctial asymmetry under geomagnetic coordinate system at LT (local time) 1030 and 2230 during 2005–2010, especially in solar minimum years of 2008–2009. The results reveal that ΔNe (December–June) is always positive over Southern Hemisphere and negative over northern part whatever at LT 1030 or 2230, only at 0–10°N the winter anomaly occurs with ΔNe (December–June) > 0, and its amplitude becomes smaller with the declining of solar flux from 2005 to 2009. The ΔNe between September and March is completely negative during 2005–2008, but in 2009, it turns to be positive at latitudes of 20°S–40°N at LT 1030 and 10°S–20°N at LT 2230. Furthermore, the solstitial and equinoctial asymmetry index (AI) are calculated and studied respectively, which all depends on local time, latitude and longitude. The notable differences occur at higher latitudes in solar minimum year of 2009 with those in 2005–2008. The equinoctial AI at LT 2230 is quite consistent with the variational trend of solar flux with the lowest absolute AI occurring in 2009, the extreme solar minimum, but the solstitial AI exhibits abnormal enhancement during 2008 and 2009 with bigger AI than those in 2005–2007. Compared with the neutral compositions at 500 km altitude, it illustrates that [O/N2] and [O] play some roles in daytime and nighttime asymmetry of Ne at topside ionosphere.  相似文献   

19.
This paper attempts to examine the control of electron density and solar activity on the F-region electron temperature. This is achieved by obtaining coefficients relating electron temperature with electron density and solar activity by using incoherent scatter radar measurements at Arecibo for the period August 1966 to May 1977. These coefficients are then used to construct an empirical model of F-region electron temperature. The model values are compared with measurements at other locations and show reasonable agreement.  相似文献   

20.
Observation of the 3-dimensional (3-D) electron density of the ionosphere is useful to study large-scale physical processes in space weather events. Ionospheric data assimilation and ionospheric tomography are methods that can create an image of the 3-D electron density distribution. While multiple techniques have been developed over the past 30 years, there are relatively few studies that show the accuracy of the algorithms. This paper outlines a novel simulation approach to test the quality of an ionospheric tomographic inversion. The approach uses observations from incoherent scatter radar (ISR) scans and extrapolates them spatially to create a realistic ionospheric representation. A set of total electron content (TEC) measurements can then be simulated using real geometries from satellites and ground receivers. This data set, for which the ‘truth’ ionosphere is known, is used as input for a tomographic inversion algorithm to estimate the spatial distribution of electron density. The reconstructed ionospheric maps are compared with the truth ionosphere to calculate the difference between the images and the truth.To demonstrate the effectiveness of this simulation framework, an inversion algorithm called MIDAS (Multi-Instrument Data Analysis Software) is evaluated for three geographic regions with differing receiver networks. The results show the importance of the distribution and density of GPS receivers and the use of a realistic prior conditioning of the vertical electron density profile. This paper demonstrates that when these requirements are met, MIDAS can reliably estimate the ionospheric electron density. When the region under study is well covered by GPS receivers, as in mainland Europe or North America, the errors in vertical total electron content (vTEC) are smaller than 1 TECu (2–4%) . In regions with fewer and more sparsely distributed receivers, the errors can be as high as 20–40%. This is caused by poor data coverage and poor spatial resolution of the reconstruction, which has an important effect on the calibration process of the algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号