首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The paper describes the technique that has been implemented to model the electron density distribution above and below the F2 peak making use of only the profiles obtained from the INTERCOSMOS-19 topside ionograms. Each single profile from the satellite height to the ionosphere peak has been fitted by a semi-Epstein layer function of the type used in the DGR model with shape factor variable with altitude. The topside above the satellite height has been extrapolated to match given values of plasmaspheric electron densities to obtain the full topside profile. The bottomside electron density has been calculated by using the maximum electron density and its altitude estimated from the topside ionogram as input for a modified version of the DGR derived profiler that uses model values for the foF1 and foE layers of the ionosphere. Total electron content has also been calculated. Longitudinal cross sections of vertical profiles from latitudes 50° N to 50° S latitude are shown for low and high geomagnetic activity. These cross sections indicate the equatorial anomaly effect and the changes of the shape of low latitude topside ionosphere during geomagnetic active periods. These results and the potentiality of the technique are discussed.  相似文献   

2.
Based on data from satellite INTERCOSMOS-BULGARIA-1300, the latitudinal distribution of oxygen and helium ions in the topside ionosphere is discussed for night-time equinox at high solar activity. A comparison with the corresponding IRI-79 distribution is made. The vertical IRI ion composition profile is checked with measurements made with VERTICAL-10 rocket. Some recommendations are made in order to improve the IRI-modelling of the ion composition in the topside ionosphere.  相似文献   

3.
The Di Giovanni/Radicella model (DGR) /1/ determines a bottom side electron densty profile alone from the set of routinely scaled ionogram parameters foE, foF1, foF2 and M(3000)F2 and the total electron content; the smoothed sunspot number R12 appears in the calculation. Present designations are DGR2/2/ and DRR3 /3/ [see Appendix]; they are valid in the northern hemisphere. DGR is compared with electron density profiles derived from ionograms obtained at Juliusruh (54.6°N, 13.4°E), and with the (URSI-based) IRI90 at different conditiones. Experimental total electron content (TEC) data are compared to both models. At the considered station, the profiles obtained by both models are reasonably in agreement amongst themselves and with the experimental data.

The TEC derived from the DGR3 model is in good agreement with experimental TEC, whereas, at high solar activity, IRI90 gives too high TEC values, especially during daytime.  相似文献   


4.
The high frequency management system with backscatter radar supplies the real time ionosphere channel conditions to high frequency users, which leads to the demand for the ground range between the radar location and the scatters on the distant ground. The ionosphere electron density profile is usually inversed to obtain the ground range. An inversion algorithm, with which the ground range on the leading edge of the backscatter ionograms can be obtained without electron density, is presented in this paper. The ray path geometry of the backscatter sounding and the change in the group path on the leading edge with operating frequency are used to derive the ground range. Synthesized backscatter ionogram and experimental backscatter ionograms are processed to validate the algorithm. The results indicate that the algorithm is usable for high frequency management system.  相似文献   

5.
This paper presents a case study when due to the descending additional U-shaped trace on vertical incidence ionograms, increased critical frequency stabilizes. This corresponds to an ionospheric disturbance that moves toward the ionosonde and then stays overhead.Within a 2D model, traveling ionospheric disturbances (TIDs) are superimposed on the inverted background ionosphere. So ray tracing is used to obtain propagation paths through non-stratified ionosphere thus synthesizing the disturbed ionogram traces. Investigated are changes in the cusp shape caused by varying TID parameters. A cusp-fitting method to determine the TID amplitude, spatial scale, and horizontal drift velocity are shown.  相似文献   

6.
The representation of the topside ionosphere (the region above the F2 peak) is critical because of the limited experimental data available. Over the years, a wide range of models have been developed in an effort to represent the behaviour and the shape of the electron density (Ne) profile of the topside ionosphere. Various studies have been centred around calculating the vertical scale height (VSH) and have included (a) obtaining VSH from Global Positioning System (GPS) derived total electron content (TEC), (b) calculating the VSH from ground-based ionosonde measurements, (c) using topside sounder vertical Ne profiles to obtain the VSH. One or a combination of the topside profilers (Chapman function, exponential function, sech-squared (Epstein) function, and/or parabolic function) is then used to reconstruct the topside Ne profile. The different approaches and the modelling techniques are discussed with a view to identifying the most adequate approach to apply to the South African region’s topside modelling efforts. The IRI-2001 topside model is evaluated based on how well it reproduces measured topside profiles over the South African region. This study is a first step in the process of developing a South African topside ionosphere model.  相似文献   

7.
During 2008, the solar activity is extremely low. The satellite observations show that the ionospheric height and electron density is much lower than the predictions by the international reference ionosphere (IRI) model. In this paper, we compared the slant total electron content (TEC) observed by the COSMIC satellites during 2008 with the IRI model results. It is found that the IRI model with IRI2001 and IRI2001 Cor. topside options will always overestimate the electron density in both lower and higher altitudes. But the rest two topside options (NeQuick, and TTS) tend to overestimate the electron density in the F layer and underestimate it in the topside altitudes. The switch altitude between overestimation and underestimation and the latitude-local time distribution of the model deviation depend on the topside option. The current investigation might be useful for the model improvement as well as data assimilation work based on the IRI model and the LEO TEC data.  相似文献   

8.
Multi-reflected echoes (MREs) and satellite traces (STs) are referred in literature as ionogram signatures of Travelling Ionospheric Disturbances (TIDs) which is a phenomenon that apparently drives spread F development mainly at nighttime mid-latitude ionosphere. A long-term statistical study has been undertaken to investigate the morphological aspect of these signatures over the lower midlatitude European station of Nicosia, Cyprus (35.19°N, 33.38°E geographic; magnetic dip. 29.38°N) by inspecting all ionograms recorded by the DPS-4D digisonde in the interval 2009–2016. The results underline the systematic manifestation of these TID signatures over Cyprus with a possible (although not quite clear) solar activity dependence and a distinctive seasonal and diurnal occurrence rate with a seasonal peak of STs during summer and of MREs during January to April. Based on the experimental results of the present study, the seasonal occurrence rate of MREs and STs is found to increase by 75% and 56% during high solar activity periods. Satellite traces are well known ionogram signatures of TIDs and mostly correlated to the nighttime spread F formation. The occurrence of mid-latitude spread Fs over European longitude sector normally increases during summer. The occurrences of TIDs are also prominent at this interval of the year over nighttime mid-latitude ionosphere. The presence of MREs as an ionogram signature of TIDs over mid-latitude ionosphere is unique in nature.  相似文献   

9.
Over 70 ionograms were selected from the ground-based ionosonde in Hanoi, Vietnam at times when the AE-E satellite passed above the station. N(h) profiles were calculated from ionograms and thus compared with the IRI model and local AE-E ion densities. For the purpose of the presentation, 15 profiles were selected to cover all seasons and local times. The comparison shows that the observed daytime N(h) profiles have significantly higher gradients below the F2 peak density while at night the observed and the IRI profiles almost coincide. The difference is more pronounced in summer than in equinox. Wintertime comparisons are quite limited and do not lead to reliable conclusions. NmF2 values taken from the CCIR programme are compared with those observed. The comparison shows that the deviations are not so large.  相似文献   

10.
High frequency ionosphere vertical sounding, as an important and representative application for detecting the ionosphere and studying the characteristics of radio propagation, can be utilized to monitor the ionosphere continuously variation and to acquire the ionosphere asymmetrical features of diverse scale above the ionosphere vertical sounding stations. This is a first article on real time application of numerical methods to obtain the parameters of traveling ionosphere disturbances (TIDs) using vertical incident ionograms. In this paper, the distribution of ionosphere electron density with TIDs is constructed using a background ionosphere model superimposed a perturbation theory model. The background ionosphere electron density is modelled by the inversion of vertical incident ionograms which are observed before the appearance of the disturbance. Based on the fourth order Adams-Bashforth-Moulton (the so-called ABM) predictor corrector method, instead of Runge-Kutta method, the fast digital ray tracing method is established. According to process of the disturbed trace simulation and parameters inversion, the characteristic parameters of ionosphere disturbance at different detection time can be obtained in real time. The numerical analysis of TIDs is then captured completely.  相似文献   

11.
Ground-based vertical incidence soundings are well suited to model the bottom-side ionosphere but are not so good for dependably modelling the topside ionosphere. This study aims to combine vertical incidence sounding and dual-frequency GPS measurements to reconstruct the topside profile. The reconstruction technique relays on the use of the so-called vary-Chap approach that use an α-Chapman function with a continuously varying scale height.  相似文献   

12.
The International Reference Ionosphere (IRI) parameters B0 and B1 provide a representation of the thickness and shape, respectively, of the F2 layer of the bottomside ionosphere. These parameters can be derived from electron density profiles that are determined from vertical incidence ionograms. This paper aims to illustrate the variability of these parameters for a single mid latitude station and demonstrate the ability of the Neural Network (NN) modeling technique for developing a predictive model for these parameters. Grahamstown, South Africa (33.3°S, 26.5°E) was chosen as the mid latitude station used in this study and the B0 and B1 parameters for an 11 year period were determined from electron density profiles recorded at that station with a University of Massachusetts Lowell Center for Atmospheric Research (UMLCAR) Digisonde. A preliminary single station NN model was then developed using the Grahamstown data from 1996 to 2005 as a training database, and input parameters known to affect the behaviour of the F2 layer, such as day number, hour, solar and magnetic indices. An analysis of the diurnal, seasonal and solar variations of these parameters was undertaken for the years 2000, 2005 and 2006 using hourly monthly median values. Comparisons between the values derived from measured data and those predicted using the two available IRI-2001 methods (IRI tables and Gulyaeva, T. Progress in ionospheric informatics based on electron density profile analysis of ionograms. Adv. Space Res. 7(6), 39–48, 1987.) and the newly developed NN model are also shown in this paper. The preliminary NN model showed that it is feasible to use the NN technique to develop a prediction tool for the IRI thickness and shape parameters and first results from this model reveal that for the mid latitude location used in this study the NN model provides a more accurate prediction than the current IRI model options.  相似文献   

13.
We examine the systematic differences between topside electron density measurements recorded by different techniques over the low-middle latitude operating European station in Nicosia, Cyprus (geographical coordinates: 35.14oN, 33.2oE), (magnetic coordinates 31.86oN, 111.83 oE). These techniques include space-based in-situ data by Langmuir probes on board.European Space Agency (ESA) Swarm satellites, radio occultation measurements on board low Earth orbit (LEO) satellites from the COSMIC/FORMOSAT-3 mission and ground-based extrapolated topside electron density profiles from manually scaled ionograms. The measurements are also compared with International Reference Ionosphere Model (IRI-2016) topside estimations and IRI-corrected NeQuick topside formulation (method proposed by Pezzopane and Pignalberi (2019)). The comparison of Swarm and COSMIC observations with digisonde and IRI estimations verifies that in the majority of cases digisonde underestimates while IRI overestimates Swarm observations but in general, IRI provides a better topside representation than the digisonde. For COSMIC and digisonde profiles matched at the F layer peak the digisonde systematically underestimates topside COSMIC electron density values and the relative difference between COSMIC and digisonde increases with altitude (above hmF2), while IRI overestimates the topside COSMIC electron density but after a certain altitude (~150 km above hmF2) this overestimation starts to decrease with altitude. The IRI-corrected NeQuick underestimates the majority of topside COSMIC electron density profiles and relative difference is lower up to approximately 100 km (above the hmF2) and then it increases. The overall performance of IRI-corrected NeQuick improves with respect to IRI and digisonde.  相似文献   

14.
Accuracy of IRI electron density profile depends on the F2 layer peak density and height converted by empirical formulae from the critical frequency and M3000F2 factor provided by the ITU-R (former CCIR). The CCIR/ITU-R maps generated from ground-based ionosonde measurements suffer from model assumptions, in particular, over the oceans where relatively few measurements are available due to a scarcity of ground-based ionosondes. In the present study a grid-point calibration of IRI/ITU-R maps for the foF2 and hmF2 over the oceans is proposed using modeling results based on the topside true-height profiles provided by ISIS1, ISIS2, IK-19 and Cosmos-1809 satellites for the period of 1969–1987. Topside soundings results are compared with IRI and the Russian standard model of ionosphere, SMI, and grouped to provide an empirical calibration coefficient to the peak density and height generated from ITU-R maps. The grid-point calibration coefficients maps are produced in terms of the solar activity, geodetic latitude and longitude, universal time and season allowing update of IRI–ITU-R predictions of the F2 layer peak parameters.  相似文献   

15.
The comparison of the IRI model with the foF2 distribution in the equatorial anomaly region obtained by topside sounding onboard the Interkosmos-19 satellite has been carried out. The global distribution of foF2 in terms of LT-maps was constructed by averaging Intercosmos-19 data for summer, winter, and equinox. These maps, in fact, represent an empirical model of the equatorial anomaly for high solar activity F10.7 ~ 200. The comparison is carried out for the latitudinal foF2 profiles in the characteristic longitudinal sectors of 30, 90, 210, 270, and 330°, as well as for the longitudinal variations in foF2 over the equator. The largest difference between the models (up to 60%) for any season was found in the Pacific longitudinal sector of 210°, where there are a few ground-based sounding stations. Considerable discrepancies, however, are sometimes observed in the longitudinal sectors, where there are many ground-based stations, for example, in the European or Indian sector. The discrepancies reach their maximum at 00 LT, since a decay of the equatorial anomaly begins before midnight in the IRI model and after midnight according to the Interkosmos-19 data. The discrepancies are also large in the morning at 06 LT, since in the IRI model, the foF2 growth begins long before sunrise. In the longitudinal variations in foF2 over the equator at noon, according to the satellite data, four harmonics are distinguished in the June solstice and at the equinox, and three harmonics in the December solstice, while in the IRI model only two and one harmonics respectively are revealed. In diurnal variations in foF2 and, accordingly, in the equatorial anomaly intensity, the IRI model does not adequately reproduce even the main, evening extremum.  相似文献   

16.
HF radio wave observations have been carried out with an oblique ionospheric sounding (OIS) method on the radio path from St. Petersburg to Longyearbyen (Svalbard), and experimental ionograms were obtained for December 2001. These ionograms have been analysed to investigate the impact of the main ionospheric trough (MIT) and magnetic disturbances on the signals on this path. The observations during weakly disturbed (Kр = 2) magnetic conditions on 14–15 December 2001 were compared with predictions from ray-tracing through a numerical model of the ionosphere. The ray-tracing computer program synthesizes the OIS ionograms by means of the “shooting method”. This method calculates trajectories of HF radio waves for different values of elevation angle and transmission frequency. There was a variety of calculated trajectories, from which we choose those which reach the receiver, and the selected paths provide a synthesis of the oblique ionograms. To simulate HF radio wave propagation, we apply a three-dimensional distribution of the electron density calculated with the mathematical model of the high-latitude ionosphere developed in the Polar Geophysical Institute (PGI). These numerical simulations permit us to interpret specific peculiarities of the OIS data such as abnormal propagation modes, increased delays of signals, enhanced MOF (maximum observed frequency) values etc. New results of the study are summarised as follows. (1) An unusual feature of the propagation along the path is the change of propagation mechanism during substorms on entering a path midpoint (or 1-hop reflection point) to the MIT. (2) Even weak substorms, having the distinguished intensities, lead to the appearance of different types of irregularities observed by the CUTLASS radar and therefore to the different propagation modes and F2MOF values. (3) The PGI model of the ionosphere was first used for ray-tracing at high latitudes. The model results are basically in a good qualitative agreement with experimental observations. This model provides the satisfactory agreement between the calculated and experimental F2MOF values while not correctly representing the fine structure of the experimental OIS ionograms at night. An agreement between the calculated and experimental data is better for day and evening hours than at night.  相似文献   

17.
The latest version of IRI includes various options for the computation of the topside electron density profile. One of the possible choices is based on NeQuick model. Its inclusion in IRI has been made transferring all the formulations used in NeQuick model. In details, an Epstein layer function is used to describe the electron density profile and the topside shape is controlled by an empirical parameter, connected to the NeQuick F2 bottomside thickness parameter, B2bot. It is computed also in this IRI topside option in order to maintain self-consistency with its original formulation. This paper analyses the possibility of using the IRI bottomside parameters for this option and its impact on the profile and TEC. The case of experimental peak values given as input is also analysed.  相似文献   

18.
本文分析了斜探测电离图(P-f)。在对测得的电离图判读的基础上给出了最高观测频率MOF的日变化曲线,它可看作为电离层准实时频率预报曲线。图中同时提供了几个重要的电离层预报参数,如MOF、LOF、MUF及Es的影响等。文章最后把斜测电离图与同时测得的返回散射电离图(在同一张电离图上)结合起来,给出了最佳工作频率窗口,其结果可以作为(在固定线路上)修正长期预报的依据,因为长期预报是用垂测数据经换算得到的。   相似文献   

19.
High frequency (HF) communication is strongly dependent on the state of the ionosphere, which specifies the mode structure of the radio wave propagating in ionosphere. Another core factor defining the strength of the HF signal at the receiving site is the ionospheric absorption. Accurate modelling the effect of absorption is an essential part of many studies of the HF propagation in the ionosphere.This paper proposes a method for estimating the absorption. The method is based on analysis of vertical sounding ionograms. The main idea of the approach is to compare the main parameters retrieved from measured and simulated ionograms. The combination of Global Ionospheric Radio Observatory (GIRO, http://giro.uml.edu) data and ionograms modelling allows for developing the empiric absorption model available at near real-time. The ionogram simulation taking into account absorption utilizes the NIM-RT (North Ionospheric Model and Ray Tracing) software. As a result, the proposed technique provides more reliable and accurate evaluation of minimum frequency at which echoes are observed in vertical incidence ionosonde soundings. The values of these frequencies should be used in the following simulation to optimize parameters in the empirical formulae for defining absorption HF wave in ionosphere.The ultimate objective of this work is the designing the method, which allows the simulating of HF radio channel accounting for regular absorption due to UV radiation of the Sun. Eventually it could be considered as some kind of the HF propagation forecasting.  相似文献   

20.
The International Reference Ionosphere (IRI) 2007 provides two new options for the topside electron density profile: (a) a correction of the IRI-2001 model, and (b) the NeQuick topside formula. We use the large volume of Alouette 1, 2 and ISIS 1, 2 topside sounder data to evaluate these two new options with special emphasis on the uppermost topside where IRI-2001 showed the largest discrepancies. We will also study the accurate representation of profiles in the equatorial anomaly region where the profile function has to accommodate two latitudinal maxima (crests) at lower altitudes but only a single maximum (at the equator) higher up. In addition to IRI-2001 and the two new IRI-2007 options we also include the Intercosmos-based topside model of Triskova, Truhlik, and Smilauer [Triskova, L., Truhlik, V., Smilauer, J. An empirical topside electron density model for calculation of absolute ion densities in IRI. Adv. Space Res. 37 (5), 928–934, 2006] (TTS model) in our analysis. We find that overall IRI-2007-NeQ gives the best results but IRI-2007-corrected provides a more realistic representation of the altitudinal–latitudinal structure in the equatorial anomaly region. The applicability of the TTS model is limited by the fact that it is not normalized to the F2 peak density and height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号