首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Seasonal-to-interannual variability of the winter-spring bloom in the Gulf of Cádiz, eastern North Atlantic, has been investigated using chlorophyll-a remote sensing (CHL). These data have been obtained from the GlobColour project; the temporal coverage extends from September 1997 to December 2010. In this study we develop a generic quantitative approach for describing the temporal variability in the shape of the winter-spring bloom within a region. Variability in both the timing and magnitude of the bloom in the basin has been evaluated as a function of physical properties in the water column such as Mixed Layer Depth (MLD, GODAS model), sea surface temperature (SST, from AVHRR radiometers), photosynthetically-active radiation (PAR, from ocean color data) and euphotic depth (Zeu, from ocean color data). The analysis indicated that the timing, size and duration of the phytoplankton bloom in this area are largely controlled by both meteorological and oceanographic conditions at different scales; this means that it is likely to vary widely from one year to another.  相似文献   

2.
The spatial and temporal patterns of the endangered Tibetan antelope or chiru (Pantholops hodgsonii) have been studied using satellite-based ARGOS platform transmitter terminal (PTT) tracking data. The data was obtained from the satellite tracking of two female Tibetan antelopes that were collared with satellite transmitters and have been tracked from August 2007 to April 2009.  相似文献   

3.
An advanced algorithm for retrieval of phytoplankton chlorophyll (CHL) and dissolved organic carbon (DOC) concentrations from MERIS images of the Kara Sea is presented. The supply of DOC of terrestrial origin into the Kara Sea is numerically assessed from satellite data on DOC and historical records of river discharge rates. It exceeds the historical in situ values only by 25%. Satellite data on CHL were exploited for calculating the phytoplankton columnar biomass and the total phytoplankton biomass in the Kara Sea. Remote sensing and in situ data were used to calculate the value of the coefficient (KPH) for calculation from phytoplankton biomass of autochthonous production of DOC. KPH proved to be 142 ± 8 gC/gPH/month and exhibited only slight interannual variations. The coefficient KPH was employed for the first time to evaluate the production of autochthonous DOC in the Kara Sea and to correct the value of the allochthonous DOC flux initially retrieved from space across the Kara Sea.  相似文献   

4.
The chlorophyll concentration of a water body is an important proxy for representing the phytoplankton biomass. Its estimation from multi or hyper-spectral remote sensing data in natural waters is generally achieved by using (i) the waveband ratioing in two or more bands in the blue-green or (ii) by using a combination of the radiance peak position and magnitude in the red-near-infrared (NIR) spectrum. The blue-green ratio algorithms have been extensively used with satellite ocean color data to investigate chlorophyll distributions in open ocean and clear waters and the application of red-NIR algorithms is often restricted to turbid productive water bodies. These issues present the greatest obstacles to our ability to formulate a modern robust method suitable for quantitative assessments of the chlorophyll concentration in a diverse range of water types. The present study is focused to investigate the normalized water-leaving radiance spectra in the visible and NIR region and propose a robust algorithm (Generalized ABI, GABI algorithm) for chlorophyll concentration retrieval based on Algal Bloom index (ABI) which separates phytoplankton signals from other constituents in the water column. The GABI algorithm is validated using independent in-situ data from various regional to global waters and its performance is further evaluated by comparison with the blue-green waveband ratios and red-NIR algorithms. The results revealed that GABI yields significantly more accurate chlorophyll concentrations (with uncertainties less than 13.5%) and remains more stable in different waters types when compared with the blue-green waveband ratios and red-NIR algorithms. The performance of GABI is further demonstrated using HICO images from nearshore turbid productive waters and MERIS and MODIS-Aqua images from coastal and offshore waters of the Arabian Sea, Bay of Bengal and East China Sea.  相似文献   

5.
This study presents the results of calibration/validation (C/V) of Envisat satellite radar altimeter over Lake Issykkul located in Kyrgyzstan, which was chosen as a dedicated radar altimetry C/V site in 2004. The objectives are to estimate the absolute altimeter bias of Envisat and its orbit based on cross-over analysis with TOPEX/Poseidon (T/P), Jason-1 and Jason-2 over the ocean. We have used a new method of GPS data processing in a kinematic mode, developed at the Groupe de Recherche de Geodesie Spatiale (GRGS), which allows us to calculate the position of the GPS antenna without needing a GPS reference station. The C/V is conducted using various equipments: a local GPS network, a moving GPS antenna along the satellites tracks over Lake Issykkul, In Situ level gauges and weather stations. The absolute bias obtained for Envisat from field campaigns conducted in 2009 and 2010 is between 62.1 and 63.4 ± 3.7 cm, using the Ice-1 retracking algorithm, and between 46.9 and 51.2 cm with the ocean retracking algorithm. These results differ by about 10 cm from previous studies, principally due to improvement of the C/V procedure. Apart from the new algorithm for GPS data processing and the orbit error reduction, more attention has been paid to the GPS antenna height calculation, and we have reduced the errors induced by seiche over Lake Issykkul. This has been assured using cruise data along the Envisat satellite track at the exact date of the pass of the satellite for the two campaigns. The calculation of the Envisat radar altimeter bias with respect to the GPS levelling is essential to allow the continuity of multi-mission data on the same orbit, with the expected launch of SARAL/Altika mission in 2012. Implications for hydrology in particular, will be to produce long term homogeneous and reliable time series of lake levels worldwide.  相似文献   

6.
With the free and full access to images from Sentinel-2 satellite, the interest to use this data for quantitative retrieval of vegetation parameters is ever-increasing. LAI and chlorophyll are two key variables which are desired for studying productivity, nutrient and stress status of vegetation. Studies carried out on croplands using simulated Sentinel-2 MSI and parametric approach have identified vegetation indices (VIs) with high sensitivity to LAI and chlorophyll. To test how Sentinel-2 red-edge based VIs perform for retrieval of LAI and Chlorophyll of tropical mixed forest canopies, this study has been performed. The field measurements of LAI and chlorophyll content were recorded in a total of 28 ESUs (Elementary Sampling Units) in Bhakra range in the Tarai Central Forest Division, Uttarakhand (India). The in-situ measurements were statistically correlated with Sentinel-2VIs and strength of correlation was validated using Predicted Residual Error Sum of Squares (PRESS) statistic. Field LAI corrected for foliage clumpiness effect improved correlation of VIs with LAI. Among all VIs tested, Normalized Difference Index (NDI) offered highest positive correlation (R2 = 0.79, p < 0.05) with LAI while Red-Edge Chlorophyll Index (RECI) (R2 = 0.83, RMSE = 0.24 g/m2, p < 0.05) and Simple Ratio (SR) 740/705 (R2 = 0.79, RMSE = 0.27 g/m2, p < 0.05) were the most closely related to chlorophyll content. VIs with red-edge and NIR combinations offered best results.  相似文献   

7.
M(3000)F2 estimation of hmF2 based on four different formulated models viz: (1) Shimazaki (1955) (2) Bradley and Dudeney (1973), (3) Dudeney (1974) and (4) Bilitza et al. (1979) at an equatorial station in West Africa during low solar activity period (1995) are used to validate its conformity with observed and International Reference Ionosphere (IRI) model. Local time analyses of data from fifteen (15) selected days during the January and July solstices and April and October equinoxes are used. The results obtained show that the M(3000)F2 estimation of hmF2 from the ionosonde-measured values using the Ionospheric Prediction Service (IPS-42) sounder compared to the observed values which were deduced using an algorithm from scaled virtual heights of quiet day ionograms are highly correlated with Bilitza model. International Reference Ionosphere (IRI 2007) model for the equatorial region also agrees with the formulation developed by Bilitza et al. (1979) for the four different seasons of the year. hmF2 is highest (425 km) in summer (June solstice) season and lowest (386 km) in autumn (September equinox) season with daytimes peaks occurring at 11001200 LT during the solstices and at 1000 LT during the equinoxes respectively. Also, the post-sunset peaks are highest (362 km) at the spring (March equinox) and lowest (308 km) at the summer (June solstice) both occurring between 1800 and 2000 LT.  相似文献   

8.
A numerical model of the peak height of the F2 layer, hmF2_top, is derived from the topside sounding database of 90,000 electron density profiles for a representative set of conditions provided by ISIS1, ISIS2, IK19 and Cosmos-1809 satellites for the period of 1969–1987. The model of regular hmF2 variations is produced in terms of local time, season, geomagnetic latitude, geodetic longitude and solar radio flux. No geomagnetic activity trends were discernible in the topside sounding data. The nighttime peak of hmF2_top evident for mid-latitudes disappears near the geomagnetic equator where a maximum of hmF2_top occurs at sunset hours when it can exceed 500 km at solar maximum. The hmF2 given by the IRI exceeds hmF2_top at the low solar activities. The hmF2_top, obtained by extrapolation of the first derivative of the topside profile to zero shows saturation similar to foF2 the greater the solar activity. The proposed model differs from hmF2 given by IRI based on M(3000)F2 to hmF2 conversion by empirical relationships in terms of foF2, foE and R12 with these quantities mapped globally by the ITU-R (former CCIR) from ground-based ionosonde data. The differences can be attributed to the different techniques of the peak height derivation, different epochs and different global distribution of the source data as well as the different mathematical functions involved in the maps and the model presentation.  相似文献   

9.
In this paper, we used the available algorithm for soil moisture estimation over LOPEX05 (the Loess Plateau land surface process Experiment (2005)) area. The available algorithm used ENVISAT/ASAR AP mode VV polarization observational data at a low incidence angle and ground measured soil moistures. The ground measurements were performed in the summer of the 2005 during the LOPEX05 field campaign. The validated results indicate that an average difference between the soil moistures estimated from the microwave remote sensing and ground measurements is less than 0.02 cm3/cm3, with a RMS error of 2.0%, and a maximum less than 0.04 cm3/cm3. The algorithm was applied to the surface soil moisture mapping later. The results show that this algorithm is suitable for monitoring soil moisture information of the agricultural fields over the Chinese Loess Plateau, when ground land cover situation and the resolution of imagery data are taken into account. However, we also find that there are large differences over the steep slope region, the edge of mesa. The results are not acceptable for surface soil moisture estimation in these regions. Thus, the surface soil moisture retrieval in the steep slope region of the Loess Plateau need to be further investigated in the future.  相似文献   

10.
Loss of function of DNA repair genes has been implicated in the development of many types of cancer. In the last several years, heterozygosity leading to haploinsufficiency for proteins involved in DNA repair was shown to play a role in genomic instability and carcinogenesis after DNA damage is induced, for example by ionizing radiation. Since the effect of heterozygosity for one gene is relatively small, we hypothesize that predisposition to cancer could be a result of the additive effect of heterozygosity for two or more genes critical to pathways that control DNA damage signaling, repair or apoptosis. We investigated the role of heterozygosity for Atm, Rad9 and Brca1 on cell oncogenic transformation and cell survival induced by 1 GeV/n56Fe ions. Our results show that cells heterozygous for both Atm and Rad9 or Atm and Brca1 have high survival rates and are more sensitive to transformation by high energy iron ions when compared with wild-type controls or cells haploinsufficient for only one of these proteins. Since mutations or polymorphisms for similar genes exist in a small percentage of the human population, we have identified a radiosensitive sub-population. This finding has several implications. First, the existence of a radiosensitive sub-population may distort the shape of the dose–response relationship. Second, it would not be ethical to put exceptionally radiosensitive individuals into a setting where they may potentially be exposed to substantial doses of radiation.  相似文献   

11.
For the estimation of the radiation risk for astronauts, not only the organ absorbed doses but also their mean quality factors must be evaluated. Three functions have been proposed by different organizations for expressing the radiation quality, including the Q(L), Q(y), and QNASA(ZE) relationships as defined in International Committee of Radiological Protection (ICRP) Publication 60, International Commission on Radiation Units and Measurements (ICRU) Report 40, and National Aeronautics and Space Administration (NASA) TP-2011-216155, respectively. The Q(L) relationship is the most simple and widely used for space dosimetry, but the use of the latter two functions enables consideration of the difference in the track structure of various charged particles during the risk estimation.  相似文献   

12.
This is to investigate ways of improving the Equatorial F2-layer peak heights estimated from M(3000)F2 ionosonde data measured using the Ionospheric Prediction Service (IPS-42) sounder at Ouagadougou, Burkina Faso (Latitude +12.4°N, Longitude +1.5°W, Dip latitude +5.9°N) during a low solar activity year (1995). For this purpose, we have compared the observed hmF2 (hmF2obs) deduced using an algorithm from scaled virtual heights of quiet day ionograms and the predicted hmF2 values which is given by the IRI 2007 model (hmF2IRI 2007) with the ionosonde measured M(3000)F2 estimation of the hmF2 values (hmF2est) respectively. The correlation coefficients R2 for all the seasons were found to range from 0.259 to 0.692 for hmF2obs values, while it ranges from 0.551 to 0.875 for the hmF2IRI 2007 values. During the nighttime, estimated hmF2 (hmF2est) was found to be positively correlated with the hmF2obs values by the post-sunset peak representation which is also represented by the hmF2IRI 2007 values. We also investigated the validity of the hmF2est values by finding the percentage deviations when compared with the hmF2obs and hmF2IRI 2007.  相似文献   

13.
China has great progress in the technology and application of ocean color remote sensing during 2004-2006. In this report, firstly, four major technical advances are displaying, including (1) the vector radiative transfer numerical model of coupled ocean-atmosphere system; (2) the atmospheric correction algorithm specialized on Chinese high turbid water; (3) systematical research of hyper-spectrum ocean color remote sensing; (4) local algorithms of oceanic parameters, like ocean color components, ocean primary productivity, water transparency, water quality parameters, etc. On the foundation of technical advances, ocean color remote sensing takes effect on ocean environment monitoring, with four major kinds of application systems, namely, (1) the automatic multi-satellites data receiving, processing and application system; (2) the shipboard satellite data receiving and processing system for fishery ground information; (3) Coastal water quality monitoring system, integrating satellite and airborne remote sensing technology and ship measurement; (4) the preliminary system of airborne ocean color remote sensing application system. Finally, the prospective development of Chinese ocean color remote sensing is brought forward. With Chinese second ocean color satellite (HY-1B) orbiting, great strides will take place in Chinese ocean color information accumulation and application.  相似文献   

14.
脉冲星方位误差估计的TSKF算法   总被引:1,自引:1,他引:0  
为提高脉冲星方位误差估计对方位自行速度及卫星位置误差的鲁棒性和整体运算的高效性,设计了两级卡尔曼滤波(TSKF)算法。首先,分析了方位自行速度及卫星位置误差对方位误差估计的影响,并分别结合相关算法进行了仿真验证。然后,结合方位误差估计的CV模型和两级卡尔量滤波的相关原理,写出了TSKF算法的更新方程,并分析了实现并行计算的基本流程。仿真实验的数据显示:在方位自行速度及卫星位置误差均存在的情况下,TSKF算法的方位估计精度约为0.1 mas,方位自行速度估计精度约为1.1 mas/a;与基于CV模型的估计算法相比,TSKF算法的浮点运算仅增加了0.048%。   相似文献   

15.
In the coming years, opportunities for remote sensing of electron density in the Earth’s ionosphere will expand with the advent of Galileo, which will become part of the global navigation satellite system (GNSS). Methods for accurate electron density retrieval from radio occultation data continue to improve. We describe a new method of electron density retrieval using total electron content measurements obtained in low Earth orbit. This method can be applied to data from dual-frequency receivers tracking the GPS or Galileo transmitters. This simulation study demonstrates that the method significantly improves retrieval accuracy compared to the standard Abel inversion approach that assumes a spherically symmetric ionosphere. Our method incorporates horizontal gradient information available from global maps of Total Electron Content (TEC), which are available from the International GNSS Service (IGS) on a routine basis. The combination of ground and space measurements allows us to improve the accuracy of electron density profiles near the occultation tangent point in the E and F regions of the ionosphere.  相似文献   

16.
Intercomparisons between satellite retrieved temperatures (TIROS N series) and those derived from radiosonde and rocketsonde profiles have been made covering the years 1980–1984. Differences in the measurement parameters between 100 and 0.4 mbar (~16–55 km) are described; generally radiosonde/satellite differences are less than 1°K, while rocketsonde/satellite differences reach 7–8°K in the upper stratosphere. Comparisons between the various in situ devices indicate that radiosonde/rocketsonde differrences are less than 1°K while precision studies of the rocketsonde instrument find that the rocketsonde measurements are internally consistent to less than 1°K up to 50 km and to less than 3°K to 60 km. Density data obtained with the small rocketsondes (in situ thermistors and inflatable spheres) and with the large sounding rocket systems show that density measurements usually agree to within 15 percent up to 85 km. Comparisons of the various atmospheric parameters obtained from different instruments are important, however the usefulness of intermixing the measurements is obvious and increased emphasis should be placed on procedures for intermingling such data. Suggestions are made on how this might be accomplished.  相似文献   

17.
The potential of satellite measurements to define the ocean surface fluxes of heat, water and momentum is reviewed. Only surface stress and possibly rainfall can be directly estimated, latent heat flux may be available through parametrization, sensible heat flux cannot be obtained. Each of the radiative flux components may be estimated including possibly the downward longwave flux. However it is emphasised that, even for those fluxes which can be obtained, improvements in absolute accuracy of the monthly mean, area averaged values are required. Sampling by a single polar orbiting satellite is likely to be at best, marginally adequate. In most cases a pair of satellites will be needed.Calibration and continued validation of the satellite data using improved in situ data will be necessary, and a combination of measurement systems will have to be used if the accuracy requirements are to be approached. Provision of in situ data systems should be considered as part of the planning for future satellite missions. Satellite data collection and location could result in a considerable improvement to the in situ data set.  相似文献   

18.
In this paper we present results for the global elastic parameters: Love number h2 and Shida number l2 derived from the analysis of Satellite Laser Ranging (SLR) data. SLR data for the two low satellites STELLA (H = 800 km) and STARLETTE (H = 810 km) observed during 2.5 years from January 3, 2005 until July 1, 2007 with 18 globally distributed ground stations were analyzed. The analysis was done separately for the two satellites. We do a sequential analysis and study the stability and convergence of the estimates as a function of length of the data set used.  相似文献   

19.
The complex structure of the light curves of Swift GRBs (e.g. superimposed flares and shallow decay) has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distribution, p, density profile of the circumburst medium, k, and the continued energy injection index, q. We do so by comparing the observed multi-wavelength light curves and X-ray spectra of a Swift sample to the predictions of the blast wave model.  相似文献   

20.
Despite the capability of Ocean Color Monitor aboard Oceansat-2 satellite to provide frequent, high-spatial resolution, visible and near-infrared images for scientific research on coastal zones and climate data records over the global ocean, the generation of science quality ocean color products from OCM-2 data has been hampered by serious vertical striping artifacts and poor calibration of detectors. These along-track stripes are the results of variations in the relative response of the individual detectors of the OCM-2 CCD array. The random unsystematic stripes and bandings on the scene edges affect both visual interpretation and radiometric integrity of remotely sensed data, contribute to confusion in the aerosol correction process, and multiply and propagate into higher level ocean color products generated by atmospheric correction and bio-optical algorithms. Despite a number of destriping algorithms reported in the literature, complete removal of stripes without residual effects and signal distortion in both low- and high-level products is still challenging. Here, a new operational algorithm has been developed that employs an inverted gaussian function to estimate error fraction parameters, which are uncorrelated and vary in spatial, spectral and temporal domains. The algorithm is tested on a large number of OCM-2 scenes from Arabian Sea and Bay of Bengal waters contaminated with severe stripes. The destriping effectiveness of this approach is then evaluated by means of various qualitative and quantitative analyses, and by comparison with the results of the previously reported method. Clearly, the present method is more effective in terms of removing the stripe noise while preserving the radiometric integrity of the destriped OCM-2 data. Furthermore, a preliminary time-dependent calibration of the OCM-2 sensor is performed with several match-up in-situ data to evaluate its radiometric performance for ocean color applications. OCM-2 derived water-leaving radiance products obtained after calibration show a good consistency with in-situ and MODIS-Aqua observations, with errors less than the validated uncertainties of ±5% and ±35% endorsed for the remote-sensing measurements of water-leaving radiance and retrieval of chlorophyll concentrations respectively. The calibration results show a declining trend in detector sensitivity of the OCM-2 sensor, with a maximum effect in the shortwave spectrum, which provides evidence of sensor degradation and its profound effect on the striping artifacts in the OCM-2 data products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号