首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multifaceted Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) was successfully flown twice in 1994 aboard the Shuttle Endeavour as part of an international imaging radar mission. The United States SIR-C operated at L- and C-band, each with multiple polarization, utilizing an active phased array antenna. The German/Italian X-SAR operated at X-band with a single polarization. SIR-C and X-SAR operated synchronously to collect data over common sites. Data were collected for repeat-track interferometric processing at all three frequencies. A total of 143 hours (93 terabits) of SAR data were digitally recorded on tape over the two flights for subsequent processing in the U.S., Germany, and Italy. This advanced multifrequency/multipolarization system has produced a rich radar data set for Earth scientific investigation and demonstration of spaceborne radar remote sensing capabilities  相似文献   

2.
The presence of speckle in synthetic aperture radar (SAR) imagery makes image interpretation more difficult and worsens the performance of algorithms designed to detect objects in the imagery. Image processing techniques to reduce speckle usually do so at the expense of spatial resolution. Multichannel whitening is one image processing technique that reduces image speckle while maintaining spatial resolution. Multichannel whitening is applied to imagery recorded during a foliage penetration experiment undertaken by MIT Lincoln Laboratory using the NASA/JPL UHF, L-, C-band fully polarimetric SAR in July 1990. In this experiment, a 50 km2 forested area near Portage, Maine was imaged. Twenty-seven 8 ft trihedral corner reflectors were arrayed throughout the imaged area beneath the foliage in order to measure foliage attenuation. The detection performance for corner reflectors under foliage is compared for the raw data and whitened data, and the predictions of a product model for the degree of speckle reduction are compared with the data  相似文献   

3.
Super resolution synthetic aperture radar (SAR) image formation via sophisticated parametric spectral estimation algorithms is considered. Parametric spectral estimation methods are devised based on parametric data models and are used to estimate the model parameters. Since SAR images rather than model parameters are often used in SAR applications, we use the parameter estimates obtained with the parametric methods to simulate data matrices of large dimensions and then use the fast Fourier transform (FFT) methods on them to generate SAR images with super resolution. Experimental examples using the MSTAR and Environmental Research Institute of Michigan (ERIM) data illustrate that robust spectral estimation algorithms can generate SAR images of higher resolution than the conventional FFT methods and enhance the dominant target features  相似文献   

4.
Physical modeling of the Doppler centroid (DC) can be used to predict synthetic aperture radar (SAR) Doppler ambiguity when antenna attitude is controlled or measured precisely enough. It is shown that the same model proves useful even in the cases of higher attitude uncertainty, if it is combined with suitable adaptive techniques. In this paper, Doppler ambiguity resolution is formulated as a hypothesis testing problem over a domain of integer values that are directly related to the attitude uncertainty. A test statistic is derived from the entire SAR scene using data adaptive processing. A broad class of such adaptive algorithms is analyzed in a unified way, starting from the range-azimuth coupling in the frequency domain and multilook techniques. The analysis includes two well-known and two new multilook methods for Doppler ambiguity resolution. A suitable test statistic is proposed for each of these methods and its dependency on the scene spatial correlation is discussed. Experimental results confirm the robustness of the combined scheme.  相似文献   

5.
The drastic reduction of Arctic sea ice in recent years demands ice monitoring over various spatial and temporal scales. Sea ice backscatter signatures from field measurements and from model analyses are obtained at L-band and C-band frequencies. Based on these signatures, capabilities for Arctic sea ice mapping are determined for current and future satellite active microwave sensors including synthetic aperture radars (SAR) and scatterometers. This study includes L-band and C-band radars such as the ERS (European Remote Sensing), Envisat (Environmental Satellite), RADARSAT-1 and 2, ALOS (Advanced Land Observing Satellite), and DESDnyl (Deformation, Ecosystem Structure, and Dynamics of Ice). SARs with resolutions from 10 to 100 m, and the SMAP (Soil Moisture Active-Passive) scatterometer with resolutions from 1 to 10 km.  相似文献   

6.
NASA's Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differential interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes, and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly pre-defined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a Unpiloted Arial Vehicle (UAV) but will initially be demonstrated on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 feet (13,800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).  相似文献   

7.
The Environmental Research Institute of Michigan (ERIM) and Horizons, Inc. have completed the development, calibration and evaluation of the Advanced Research Projects Agency (ARPA)/US Army Topographic Engineering Center (TEC) funded IFSARE (Interferometric Synthetic Aperture Radar for Digital Terrain Elevations) system. This system rapidly produces geocoded SAR imagery and digital terrain elevation data. The dual-channel, X-band SAR is installed in the ERIM Learjet 36. The ground processor was developed in collaboration with the NASA Jet Propulsion Laboratory. The system produces 1.5 to 3.0 meters (1 sigma) absolute accuracy three-dimensional terrain elevation data over large areas without the use of ground control points. Several examples from recent data collections are presented  相似文献   

8.
SAR幅度图像统计模型及其参数估计   总被引:5,自引:4,他引:1  
对适用于复杂场景SAR幅度图像的乘积模型统计特征进行了深入的分析,导出了其概率分布的一般形式,在单视情况下讨论了三种参数估计方法。MSTAR数据的统计分析结果表明该模型对于高分辨力的SAR图像有较好的适用性。  相似文献   

9.
王昕  汪玲  朱岱寅 《航空学报》2014,35(4):1053-1063
超高分辨率条件下,机载合成孔径雷达(SAR)发射信号带宽大,合成孔径时间比较长,对成像处理算法的精度和效率要求较高。现有近似频率域处理和时间域滤波反投影(FBP)算法聚焦SAR数据时均存在诸多问题。基于微局部分析方法,提出了一种新颖的频率域滤波反投影(FD-FBP)成像处理方案。首先,利用Keystone变换简化了数据距离多普勒(RD)域徙动表达式。然后,在RD域进行反投影操作,对参考位置处反投影数据进行移位、相位补偿和FFT等操作即可以得到图像,从而在保证算法精确性的前提下有效降低了运算效率,实现了频率域方法的高效率和时间域方法的精确性特点的结合。最后,点目标仿真和实测数据处理以及与FBP等算法的对比验证了该方法的有效性。  相似文献   

10.
Two Earth-orbiting radar missions are planned for the near future by NASA-Shuttle Radar Topography Mission (SRTM) and LightSAR. The SRTM will fly aboard the Shuttle using interferometric synthetic aperture radar (IFSAR) to provide a global digital elevation map. SRTM is jointly sponsored by NASA and the National Imagery and Mapping Agency (NIMA). The LightSAR will utilize emerging technology to reduce mass and life-cycle costs for a mission to acquire SAR data for Earth science and civilian applications and to establish commercial utility. LightSAR is sponsored by NASA and industry partners. The use of IFSAR to measure elevation is one of the most powerful and practical applications of radar. A properly equipped spaceborne IFSAR system can produce a highly accurate global digital elevation map, including cloud-covered areas, in significantly less time and at significantly lower cost than other systems. For accurate topography over a large area, the interferometric measurements can be performed simultaneously in physically separate receive systems. Since LightSAR offers important benefits to both the science community and US industry, an innovative government-industry teaming approach is being explored, with industry sharing the cost of developing LightSAR in return for commercial rights to its data and operational responsibility. LightSAR will enable mapping of surface change. The instrument's high-resolution mapping, along with its quad polarization, dual polarization, interferometric and ScanSAR modes will enable continuous monitoring of natural hazards, Earth's surface deformation, surface vegetation change, and ocean mesoscale features to provide commercially viable and scientifically valuable data products. Advanced microelectronics and lightweight materials will increase LightSAR's functionality without increasing the mass. Dual frequency L/X-band designs have been examined  相似文献   

11.
In the paper,a set of algorithms to construct synthetic aperture radar(SAR)matching suitable features are frstly proposed based on the evolutionary synthesis strategy.During the process,on the one hand,the indexes of primary matching suitable features(PMSFs)are designed based on the characteristics of image texture,SAR imaging and SAR matching algorithm,which is a process involving expertise;on the other hand,by designing a synthesized operation expression tree based on PMSFs,a much more flexible expression form of synthesized features is built,which greatly expands the construction space.Then,the genetic algorithm-based optimized searching process is employed to search the synthesized matching suitable feature(SMSF)with the highest effciency,largely improving the optimized searching effciency.In addition,the experimental results of the airborne synthetic aperture radar ortho-images of C-band and P-band show that the SMSFs gained via the algorithms can reflect the matching suitability of SAR images accurately and the matching probabilities of selected matching suitable areas of ortho-images could reach 99±0.5%.  相似文献   

12.
条带模式合成孔径雷达回波数据的聚束成像算法处理   总被引:7,自引:0,他引:7  
对条带模式SAR和聚束模式SAR的关系进行了研究,给出了一种如何利用聚束成像算法来处理条带模式SAR的原始回波数据的方法,这种方法基于两种模式成像处理器输入数据的不同特点和Dechirp解调原理,同时使用了频谱扩展的方法。在没有聚束模式SAR原始回波数据的情况下,可使用本文的方法利用条带SAR数据来模拟聚束SAR数据,以便研究聚束成像算法。此外在条带 SAR成像过程中,利用文中给出的算法,可以对某一小的目标区域进行精细成像。也可将此方法用于条带SAR的快视成像中。  相似文献   

13.
聚束SAR扩展Chirp Scaling成像算法.   总被引:5,自引:2,他引:5  
在合成孔径雷达(SAR Synthetic Aperture Radar)的成像算法中,Chrip Scaling成像算法具有计算效率高的优点,因此得到了较为广泛的应用。详细研究了子孔径扩展Chirp Scaling算法在高分辩率聚束模式SAR中的应用,包括子孔径划分和方位向处理问题,针对A.Moreira等1996年所提算法在处理聚束SAR数据时所产生的问题,给出了经过改进的适合于大斜视角处理的整个计算过程的完整表达式。在给出点目标仿真的同时,利用E-SAR实际数据对述方法进行了验证,结果对具体的兼容条带和聚束两种工作模式的SAR处理机设计具有一定的参考价值。  相似文献   

14.
调频连续波SAR成像算法研究   总被引:14,自引:0,他引:14       下载免费PDF全文
机载遥感微波成像雷达在地球观测特别是在城市应用中起着非常重要的作用,现在人们对体积小、重量轻、成本效益高、分辨率高的成像雷达越来越关注。调频连续波(FM-CW)技术和SAR相结合的调频连续波合成孔径雷达应运而生。论文详细分析了FM-CW SAR的成像过程,提出了去除相位残余的算法,并给出仿真结果。通过仿真可以看出,调频连续波合成孔径雷达具有较好的空间分辨力。  相似文献   

15.
We examine various model-based automatic target recognition (MBATR) classifiers to investigate the utility of model-catalog compression realized via signal-vector quantization (VQ) and feature extraction. We specifically investigate the impact of various compression rates and common automatic target recognition (ATR) scenario variations such as noise and occlusion through simulations on high-range resolution (HRR) radar and synthetic aperture radar (SAR) data. For this data, we show that significant computational savings are possible for modest decreases in classification performance.  相似文献   

16.
This series papers describes analyses of a foliage penetration experiment undertaken by MIT Lincoln Laboratory to assess the ability of synthetic aperture radar (SAR) to detect targets under trees. Data were taken using the NASA/JPL UHF, L-, C-band fully polarimetric SAR over a forested area in Maine in July 1990. Future experiments are planned to measure the polarimetric properties of clutter and targets using the latest ultrawideband sensors with submeter resolutions and fully polarimetric data collection capabilities  相似文献   

17.
The objective of the Dawn topography investigation is to derive the detailed shapes of 4 Vesta and 1 Ceres in order to create orthorectified image mosaics for geologic interpretation, as well as to study the asteroids?? landforms, interior structure, and the processes that have modified their surfaces over geologic time. In this paper we describe our approaches for producing shape models, plans for acquiring the needed image data for Vesta, and the results of a numerical simulation of the Vesta mapping campaign that quantify the expected accuracy of our results. Multi-angle images obtained by Dawn??s framing camera will be used to create topographic models with 100 m/pixel horizontal resolution and 10 m height accuracy at Vesta, and 200 m/pixel horizontal resolution and 20 m height accuracy at Ceres. Two different techniques, stereophotogrammetry and stereophotoclinometry, are employed to model the shape; these models will be merged with the asteroidal gravity fields obtained by Dawn to produce geodetically controlled topographic models for each body. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic and impact history of Vesta, and enable co-registration of data sets to determine Vesta??s geologic history. At Ceres, the topography will likely reveal much about processes of surface modification as well as the internal structure and evolution of this dwarf planet.  相似文献   

18.
在SAR图像解译应用领域,目标的自动检测与识别一直是该领域的研究重点和热点,也是该领域的研究难点。针对SAR图像的目标检测与识别方法一般由滤波、分割、特征提取和目标识别等多个相互独立的步骤组成。复杂的流程不仅限制了SAR图像目标检测识别的效率,多步骤处理也使模型的整体优化难以进行,进而制约了目标检测识别的精度。采用近几年在计算机视觉领域表现突出的深度学习方法来处理SAR图像的目标检测识别问题,通过使用CNN、Fast RCNN以及Faster RCNN等模型对MSTAR SAR公开数据集进行目标识别及目标检测实验,验证了卷积神经网络在SAR图像目标识别领域的有效性及高效性,为后续该领域的进一步研究应用奠定了基础。  相似文献   

19.
Operational deficiencies exist in the current ability to perform high resolution synthetic aperture radar (SAR) targeting for precision strike missions in difficult electronic countermeasure (ECM) and anti-aircraft environments. Increasingly sophisticated enemy defenses require that fire control information be derived from highly maneuverable aircraft trajectories rather than traditional straight-and-level flight. In addition, target area aspect information is needed to determine optimal attack approaches. These imaging and targeting conditions impose severe performance requirements on the sensor aircraft motion compensation system (MCS), and dictate the need for sophisticated algorithms to counteract ECM threats. This paper describes the development of a user friendly “Design Tool” for modeling and analysis of airborne radar system performance for SAR imaging and Precision SAR Targeting  相似文献   

20.
Experiments were conducted to determine the feasibility of using a passive microwave sensor of velocity/altitude ratio (V/H) as the basis for an aircraft navigation system. This sensor, combined with a radar altimeter, yields the velocity information needed for navigation. Airborne measurements were made with a two-beam X-band radiometer in a C-47 test aircraft. Radiometer signals and auxiliary information were recorded on magnetic tape. Ground-based data processing provided a comparison of radiometer-derived V/H measurements with those derived from independent sensors. Good results (fluctuating errors comparable to experimental uncertainties) were obtained over green farmland, urban areas, rice paddies, and certain desert areas; marginal results were obtained over other deserts and winter farmland. It was concluded that a microwave V/H sensor is feasible as the basis for a navigation system at low altitude over favorable terrains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号