首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report the measurements of the response of a delta-doped Charge Coupled Device (CCD) in imaging mode to beams of charged and neutral particles. That is, the detector imaged the incident beam over its 1024 × 1024 pixels, integrating the number of particles counted in each pixel during the exposure period. In order to count individual particles the exposure time would have had to be reduced considerably compared to the typical ?5 s used in these studies. Our CCD thus operated in a different manner than do conventional particle detectors such as the CEM and MCP that normally are used in a particle counting mode. The measurements were carried out over an energy range from 0.8 to 30 keV. The species investigated include H, H+, He+, N+, N2+, and Ar+. The energy and ion mass covered wider ranges than previous measurements for the CCD. The results of these measurements show, as in the case of the previous measurement, for a given ion the CCD response increases with energy and for a given particle energy the response decreases with increasing mass of the particle. These results are in agreement with predictions of the theory of the range of ions in solids. The results also show the possibility for the application of the delta doped CCD as a detector for low energy particle measurements for space plasma physics applications.  相似文献   

2.
BEPI COLOMBO is a joint mission between ESA and JAXA that is scheduled for launch in 2014 and arrival at Mercury in 2020. A comprehensive set of ion sensors will be flown onboard the two probes that form BEPI COLOMBO. These ion sensors combined with electron analyzers will allow a detailed investigation of the structure and dynamics of the charged particle environment at Mercury. Among the ion sensors, the Mass Spectrum Analyzer (MSA) is the experiment dedicated to composition analysis onboard the Mercury Magnetospheric Orbiter (MMO). It consists of a top-hat for energy analysis followed by a Time-Of-Flight (TOF) section to derive the ion mass. A notable feature of MSA is that the TOF section is polarized with a linear electric field that provides an enhanced mass resolution, a capability that is of importance at Mercury since a variety of species originating from the planet surface and exosphere is expected. MSA exhibits two detection planes: (i) one with moderate mass resolution but a high count rate making MSA appropriate for plasma analysis, (ii) another with a high (above 40) mass resolution though a low count rate making it appropriate for planetology science. Taking advantage of the spacecraft rotation, MSA will provide three-dimensional distribution functions of magnetospheric ions, from energies characteristic of exospheric populations (a few eVs or a few tens of eVs) up to the plasma sheet energy range (up to ∼40 keV/q) in one spin (4 s).  相似文献   

3.
Observations of charged particle fluxes in the stratosphere of the polar regions represent the cosmic rays variations with energy above 100 MeV. At the end of 2009 these fluxes reached the highest level for the time of observations from mid 1957 and were by 17% higher than the previous extremum value of May 1965. In the mean time the ground-based neutron monitors showed the remarkably less count rate enhancement. These results argue for the significant change in the energy spectrum of incoming particles in 2008–2009 in the energy range of ∼100–1500 MeV/n.  相似文献   

4.
EPONA is an energetic particle detector system incorporating totally depleted silicon surface barrier layer detectors. Active and passive background shielding will be employed and, by applying various techniques, particles of different species, including electrons, protons, alpha particles and pick-up ions of cometary origin may be detected over a wide spectrum of energies extending from the tens of KeV into the MeV range.

The instrument can operate in two modes namely (a) in a cruise phase or storage mode and (b) in a real time mode. During the real time mode, observations at high spatial (octosectoring) and temporal (0.5s) resolution in the cometary environment permit studies to be made of accelerated particles at the bow shock and/or in the tail of the comet. In conjunction with magnetic field measurements on board Giotto, observations of energetic electrons and their anisotropies can determine whether the magnetic field lines in the cometary tail are open or closed. Further, the absorption of low energy solar particles in the cometary atmosphere can be measured and such data would provide an integral value of the pertaining gas and dust distribution. Solar particle background measurements during encounter may also be used to correct the measurements of other spacecraft borne instruments potentially vulnerable to such radiation.

Solar particle flux measurements, obtained during the cruise phase will, when combined with simultaneous observations made by other spacecraft at different heliographic longitudes, provide information concerning solar particle propagation in the corona and in interplanetary space.  相似文献   


5.
Following a feasibility study in 2000–2001 on using the EISCAT ionospheric research radars to detect centimetre-sized space debris in the frame of an ESA contract, we are now finishing a continuation study, aimed at achieving debris detection and parameter estimation in real-time. A requirement is to “piggy-back” space debris measurements on top of EISCAT’s normal ionospheric work, without interfering with that work, and to be able to handle about 500 h of measurements per year. We use a special digital receiver back-end in parallel with EISCAT’s standard receiver. We sample fast enough to correctly band-pass sample the EISCAT analog frequency band. To increase detection sensitivity, we use coherent pulse-to-pulse integration. The coherent integration is built-in in our method of parameter estimation, which we call the match function (MF) method. The method is derived from Bayesian statistical inversion, but reduces, with standard assumptions about noise and prior, to minimizing the least squares norm ∥z(t)  (R,v,a;t)∥, where z is the measured signal and {} is a set of model signals. Because the model signals depend linearly on the amplitude b, it is sufficient to maximize the magnitude of the inner product (cross correlation) between z and χ, the amplitude estimate is then determined by direct computation. The magnitude of the inner product, when properly normalized, is the MF. To construct the set of model signals, we sample the EISCAT transmission, in the same way as we sample the received signal, and apply linearly changing Doppler-shifts to it. Our initial implementation of the MF-method in 2001 was about four orders of magnitude too slow for real-time applications, but we have now gained the required speed factors. A factor of ten comes from using faster computers, another factor of ten comes from coding our key algorithms in C instead of Matlab. The largest factor, typically 100–300, comes from using a special, approximative, but in practice quite sufficient, method of finding the MF maximum. Test measurements show that we get real-time speed already when using a single dual-processor 2 GHz G5 Macintosh to do the detection computations.  相似文献   

6.
The shape of flux profiles of gradual solar energetic particle (SEP) events depends on several not well-understood factors, such as the strength of the associated shock, the relative position of the observer in space with respect to the traveling shock, the existence of a background seed particle population, the interplanetary conditions for particle transport, as well as the particle energy. Here, we focus on two of these factors: the influence of the shock strength and the relative position of the observer. We performed a 3D simulation of the propagation of a coronal/interplanetary CME-driven shock in the framework of ideal MHD modeling. We analyze the passage of this shock by nine spacecraft located at ∼0.4 AU (Mercury’s orbit) and at different longitudes and latitudes. We study the evolution of the plasma conditions in the shock front region magnetically connected to each spacecraft, that is the region of the shock front scanned by the “cobpoint” (Heras et al., 1995), as the shock propagates away from the Sun. Particularly, we discuss the influence of the latitude of the observer on the injection rate of shock-accelerated particles and, hence, on the resulting proton flux profiles to be detected by each spacecraft.  相似文献   

7.
真空舱内背景压强是电推力器地面试验过程中影响工作性能评估和羽流场参数诊断的重要参数。针对LIPS-200型离子推力器羽流场参数的数值仿真中采用的背景压强建立方法进行了仿真分析。仿真中采用混合粒子网格(PIC)方法和直接模拟蒙特卡罗(DSMC)方法处理羽流场中等离子体运动和粒子间碰撞,分别采用虚拟粒子和计算粒子建立压强的方式,对电推进羽流场进行了数值模拟,并与绝对真空环境进行对比分析。结果表明:背景压强的存在导致中性粒子和电荷交换离子数密度较绝对真空环境高1个量级以上。虚拟粒子可大幅提高计算效率,获得的流场中电荷交换离子分布与计算粒子结果相近,但中性粒子分布相差较大,虚拟粒子无法表征壁面及真空泵的影响。   相似文献   

8.
Systematical errors of the spacecraft measured high-energy particle fluxes are analyzed. The errors are shown to be inherent to most of the measurements made to be the monitoring of the high-energy radiation in the space. The level of the systematic errors of the measurements varies with energy, thus resulting in distortions of the solar energetic particle spectra based on the measurement data. The erroneous experimental data have resulted in spurious estimates of space radiation environment and give rise to erroneous physical conclusions.  相似文献   

9.
基于支持向量机的飞行器多余物信号识别   总被引:1,自引:0,他引:1  
针对飞行器控制电路在生产制造过程中可能引入金属线头等微小多余物,从而留下短路等安全隐患的问题,提出了一种基于微粒碰撞噪声检测(PIND)的飞行器多余物材质识别方法。首先,利用短时自相关函数提取PIND信号的脉冲部分;然后,提取多种时频域统计特征,并与梅尔频率倒谱系数(MFCC)特征结合起来;最后,训练多分类支持向量机模型实现材质分类。为验证所提方法的有效性,采集了3种不同材质多余物的PIND信号进行模型训练及测试,实验结果表明,所提方法材质识别准确率达98%,优于同类方法的相关结果。   相似文献   

10.
One of the highest-priority issues for a future human or robotic lunar exploration is the lunar dust. This problem should be studied in depth in order to develop an environment model for a future lunar exploration. A future ESA lunar lander mission requires the measurement of dust transport phenomena above the lunar surface. Here, we describe an instrument design concept to measure slow and fast moving charged lunar dust which is based on the principle of charge induction. LDX has a low mass and measures the speed and trajectory of individual dust particles with sizes below one micrometer. Furthermore, LDX has an impact ionization target to monitor the interplanetary dust background. The sensor consists of three planes of segmented grid electrodes and each electrode is connected to an individual charge sensitive amplifier. Numerical signals were computed using the Coulomb software package. The LDX sensitive area is approximately 400 cm2. Our simulations reveal trajectory uncertainties of better than 2° with an absolute position accuracy of better than 2 mm.  相似文献   

11.
The South Atlantic Anomaly (SAA) has been monitored for 19 years using the Along Track Scanning Radiometer (ATSR) series of instruments onboard the ERS-1, ERS-2 and ENVISAT ESA satellites. The time evolution of the night-time particle induced noise in the short wavelength infrared (SWIR, 1.6 μm) and visible (VIS, 0.55 μm) channels of the ATSR instrument series have been analysed. The monthly location and extension of the SAA are inferred by fitting a two-dimensional, elliptical Gaussian function to the coordinates of the night-time hot spots detected over the SAA region. The location of the centre of the SAA is found to drift westwards with an average drift rate of about 0.24 deg/year and northward with an average drift rate of about 0.12 deg/year. Irregularities are found where the drift speed is inverted and the SAA moves eastward and southward. Results indicate that, as expected, the retrieved values of SAA’s strength and extension are anti-correlated with the solar activity expressed by the solar flux at 10.7 cm (F10.7). Finally, the peak-to-peak amplitude of the seasonal variation of the SAA strength, estimated from monthly VIS data, is found to be 30% of the average value with the annual to semiannual amplitude ratio of 1.38.  相似文献   

12.
Space radiation has been monitored successfully using the Radiation Risks Radiometer-Dosimeter (R3D) installed at the ESA EXPOSE-R (R3DR) facility outside of the Russian Zvezda module of the International Space Station (ISS) between March 2009 and January 2011. R3DR is a Liulin type spectrometer–dosimeter with a single Si PIN detector 2 cm2 of area and 0.3 mm thick. The R3DR instrument accumulated about 2 million measurements of the absorbed dose rate and flux of 10 s resolution. The total external and internal shielding before the detector of R3DR device is 0.41 g cm−2. The calculated stopping energy of normally incident particles to the detector is 0.78 MeV for electrons and 15.8 MeV for protons. After the Coronal Mass Ejection (CME) at 09:54 UTC on 3 April 2010, a shock was observed at the ACE spacecraft at 0756 UTC on 5 April, which led to a sudden impulse on Earth at 08:26 UTC. Nevertheless, while the magnetic substorms on 5 and 6 of April were moderate; the second largest in history of GOES fluence of electrons with energy >2 MeV was measured. The R3DR data show a relatively small amount of relativistic electrons on 5 April. The maximum dose rate of 2323 μGy day−1 was reached on 7 April; by 9 April, a dose of 6600 μGy was accumulated. By the end of the period on 7 May 2010 a total dose of 11,587 μGy was absorbed. Our data were compared with AE-8 MIN, CRESS and ESA-SEE1 models using SPENVIS and with similar observations on American, Japanese and Russian satellites.  相似文献   

13.
Release of stored magnetic energy via particle acceleration is a characteristic feature of astrophysical plasmas. Magnetic reconnection is one of the mechanisms for releasing energy from magnetized plasmas. Collisionless magnetic reconnection could provide both the energy release mechanism and the particle accelerator in space plasmas. Here we studied particle acceleration when fluctuating (in-time) electric fields are superposed on an static X-type magnetic field in collisionless hot solar plasma. This system is chosen to mimic the reconnective dissipation of a linear MHD disturbance. Our results are compared to particle acceleration from constant electric field superposed on an X-type magnetic field. The constant electric field configuration represents the effects of steady state magnetic reconnection. Time evolution of ion and electron distributions are obtained by numerically integrating particle trajectories. The frequencies of the electric field represent a turbulent range of waves. Depending on the frequency and amplitude of the electric field, electrons and ions are accelerated to different degrees and have energy distributions of bimodal form consisting of a lower energy part and a high energy tail. For frequencies (ω in dimensioless units) in the range 0.5 ? ω ? 1.0 a substantial fraction (20%–30%) of the proton distribution is accelerated to gamma-ray producing energies. For frequencies in the range 1 ? ω ? 100.0 the bulk of the electron distribution is accelerated to hard X-ray producing energies. The acceleration mechanism is important for solar flares and solar noise storms but it could be applicable to all collisionless astrophysical plasmas.  相似文献   

14.
基于磁层粒子动力学理论,根据单粒子方法和偶极磁场模型,在近地球区(L<10),详细讨论了带电粒子的运动特征以及适合不同能量的带电粒子的计算方法,定量分析了磁层中的电场和磁场对各种能量的带电粒子漂移运动的影响.结果表明,对于能量低于105 eV的电子和102 eV的质子,宜采用引导中心近似方法;对于能量介于105~108 eV之间的电子和102~108 eV之间的质子,可在部分区域内采用引导中心近似方法,若运动区在10 Re内,则只能采用变步长的轨道法;而对于引导中心方法,粒子能量高于105 eV时可以忽略电场漂移的影响,粒子能量低于103 eV时不必考虑磁场漂移的影响,从而简化了引导中心方程组,提高了数值计算效率.   相似文献   

15.
We describe the differential energy spectrum of trapped particles measured by a solid-state charged particle telescope in the mid-deck of the Space Shuttle during the period of solar maximum. The telescope was flown in two high altitude flights at 28.5° and 57° inclination. Assuming, as is normally done, that the variations of Shuttle orientation during the missions lead to average isotropic incident spectra, the observed spectrum disagrees significantly from AP8 model calculations. This indicates the need to take into consideration the variations of solid-angle direction relative to the magnetic field. The measurements show that there is a very significant flux of secondary light ions. The energy spectra of these ions does not agree with the production spectrum from radiation transport calculations based on omni-directional AP8 Max model as an input energy spectrum.

We also describe measurements of linear energy transfer spectra using a tissue equivalent proportional counter (TEPC) flown both in the mid-deck and the payload bay of the Space Shuttle. Comparisons are made between linear energy transfer spectral measurements AP8 model-based radiation transport predictions, and thermoluminescent dosimeter (TLD) measurements. The absorbed dose-rate measurements using TLD's are roughly 25% lower than the TEPC-measured dose rate measurements.  相似文献   


16.
Particle detectors of worldwide networks are continuously measuring various secondary particle fluxes incident on Earth surface. At the Aragats Space Environmental Center (ASEC), the data of 12 cosmic ray particle detectors with a total of ∼280 measuring channels (count rates of electrons, muons and neutrons channels) are sent each minute via wireless bridges to a MySQL database. These time series are used for the different tasks of off-line physical analysis and for online forewarning services. Usually long time series contain several types of errors (gaps due to failures of high or low voltage power supply, spurious spikes due to radio interferences, abrupt changes of mean values of several channels or/and slowly trends in mean values due to aging of electronics components, etc.). To avoid erroneous physical inference and false alarms of alerting systems we introduce offline and online filters to “purify” multiple time-series. In the presented paper we classify possible mistakes in time series and introduce median filtering algorithms for online and off-line “purification” of multiple time-series.  相似文献   

17.
Bepi Colombo is a joint mission between ESA and JAXA that is scheduled for launch in 2014 and arrival at Mercury in 2020. A comprehensive set of particle sensors will be flown onboard the two probes that form Bepi Colombo. These sensors will allow a detailed investigation of the structure and dynamics of the charged particle environment at Mercury. Onboard the Mercury Magnetospheric Orbiter (MMO) the Mercury Electron Analyzers (MEA) sensors constitute the experiment dedicated to fast electron measurements between 3 and 25,500 eV. They consist of two top-hat electrostatic analyzers for angle-energy analysis followed by microchannel plate multipliers and collecting anodes. A notable and new feature of MEA is that the transmission factor of each analyzer can be varied in-flight electronically by a factor reaching up to 100, thus allowing to largely increasing the dynamical range of the experiment. This capability is of importance at Mercury where large changes of electron fluxes are expected from the solar wind to the various regions of the Mercury magnetosphere. While the first models are being delivered to JAXA, an engineering model has been tested and proven to fulfill the expectations about geometrical factor reduction and energy-angular transmission characteristics. Taking advantage of the spacecraft rotation with a 4 s period, MEA will provide fast three-dimensional distribution functions of magnetospheric electrons, from energies of the solar wind and exospheric populations (a few eVs) up to the plasma sheet energy range (some tens of keV). The use of two sensors viewing perpendicular planes allows reaching a ¼ spin period time resolution, i.e., 1 s, to obtain a full 3D distribution.  相似文献   

18.
This article aims to understand the motion of the charged particles trapped in the Earth’s inner magnetosphere. The emphasis is on identifying the numerical scheme, which is appropriate to characterize the trajectories of the charged particles of different energies that enter the Earth’s magnetosphere and get trap along the magnetic field lines. These particles perform three different periodic motions, namely: gyration, bounce, and azimuthal drift. However, often, the gyration of the particle is ignored, and only the guiding center of the particle is traced to reduce the computational time. It is because the simulation of all three motions (gyro, bounce, and drift) together needed a robust numerical scheme, which has less numerical dissipation. We have developed a three-dimensional test particle simulation model in which the relativistic equation of motion is solved numerically using the fourth and sixth-order Runge-Kutta methods. The stability of the simulation model is verified by checking the conservation of total kinetic energy and adiabatic invariants linked with each type of motion. We found that the sixth-order Runge-Kutta method is suitable to trace the complete trajectories of both proton and electron of a wide energy range, 5 keV to 250 MeV for L = 2  6. We have estimated the bounce and drift periods from the simulations, and they are found to be in good agreement with the theory. The study implies that a simulation model with sixth-order Runge-Kutta method can be applied to the time-vary, non-analytical form of magnetic configuration in future studies to understand the dynamics of charged particles trapped in Earth’s magnetosphere.  相似文献   

19.
Since 1988 high sensitivity dosimeter-radiometer “Liulin” has been installed on board the MIR space station. Device measured absorbed dose rate and flux of penetrating particles. Results of measurements showed that after powerful solar proton events (SPE) September–October, 1989 and March, 1991 additional quasistable radiation belts were formed in the near earth space within the interval L=1.8−3.0. These “new” belts were observed as an additional maximums in flux (and sometimes dose) channels when crossing the SAA region. “New” belts were quasi stable and existed at least several months, decaying slightly after SPE. Dose to flux ratio analysis showed that major components of these belts were energetic electrons and protons arising in connection with preceding SPEs.  相似文献   

20.
On exploratory class missions astronauts will be exposed to a variety of heavy particles (HZE particles) which differ in terms of particle energy and particle linear energy transfer. The present experiments were designed to evaluate how these physical characteristics of different particles affect cognitive performance, specifically operant responding. Following exposure to 28Si, 48Ti, 12C and 16O particles at the NASA Space Radiation Laboratory rats were tested for their ability to respond appropriately to changes in reinforcement schedules using an operant task. The results showed that the effectiveness of different particles in disrupting cognitive performance, defined as the lowest dose that produced a performance decrement, varied as a function of the energy of the specific particle: for comparisons between different energies of the same particle (e.g., 56Fe) the effectiveness of the particle was directly proportional to particle linear energy transfer, whereas for comparisons between different particles (e.g., 56Fe and 16O) effectiveness was inversely proportional to particle linear energy transfer. The results are discussed in terms of the mechanisms that influence the effectiveness of different particles and energies and in terms of their implications for analyzing the possible risks to astronauts of decrements in cognitive performance following exposure to HZE particles on long-duration exploratory class missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号