首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Within the last years, a real-time system to monitor high energy cosmic rays for space weather use has been operated at Athens cosmic ray station. Neutron monitors and satellite high resolution data in real time are used, making it possible to observe cosmic rays in dual energy range observations. In large solar energetic particle (SEP) events, ground level enhancement (GLE) can provide the earliest alert for the onset of the SEP event. This system watches for count rate increases recorded in real time by 23 neutron monitors, which triggers an alarm if a ground level enhancement (GLE) of cosmic ray intensity is detected.  相似文献   

2.
There is considerable speculation about the effects at aircraft altitudes resulting from extreme solar proton events. The ground level event (GLE) of 23 February 1956 (GLE 5), remains the largest solar proton event of the neutron monitor era in terms of its influence on count rates at monitors near sea level. During this GLE the count rate was increased by as much as 4760% (15-min average) at the Leeds monitor relative to the count rate from galactic cosmic radiation (GCR). Two modern models of the event cumulative solar proton spectrum for this event, a 6-parameter fit in energy and a 4-parameter Band fit in rigidity, are compared with 1-h of GCR at solar minimum. While effective doses calculated with CARI-7A for both models at low geomagnetic cutoff rigidities are indeed high when compared with GCR and can exceed recommended exposure limits, both GLE spectra exhibit a much stronger dependence on cutoff rigidity than GCR, and a larger fraction of the dose from neutrons. At locations with cutoff rigidities above 4.2 and 6.4?GV, respectively, the GLE effective doses are smaller than the GCR hourly dose. At locations with cutoff rigidities above about 4?GV, GCR was the dominant source of exposure in 10?h or less at all altitudes examined. This suggests that if a similar event occurs in the future, low- and mid-latitude flights at modern jet flight altitudes could be well-protected by Earth’s magnetic field.  相似文献   

3.
In order to understand the physics under extreme solar conditions such as those producing ground level enhancements of solar cosmic rays, it is important to use accurate and reliable models. The NM-BANGLE Model is a new cosmic ray model which couples primary solar cosmic rays at the top of the Earth’s atmosphere with the secondary ones detected at ground level by neutron monitors during GLEs. This model calculates the evolution of several GLE parameters such as the solar cosmic ray spectrum, anisotropy and particle flux distribution, revealing crucial information on the energetic particle propagation and distribution. The total output of the NM-BANGLE Model is a multi-dimensional GLE picture that gives an important contribution to revealing the characteristics of solar energetic particle events recorded at ground level. In this work, the results of the NM-BANGLE Model application to the recent GLE of 13 December 2006 are presented and discussed. Moreover, a comparison with the extreme event of 20 January 2005 (GLE69) has been realized.  相似文献   

4.
Based on ground-level data and on satellite data we determine in this work the observational spectrum of both, the Ground Level Enhancement of May 17, (2012) the so-called GLE71 and the Ground Level Enhancement of September 10, 2017 (GLE 72). We describe a simplified method to obtain the experimental spectrum at ground level. Data of the GLE71 and GLE72 indicate the presence of two different populations, each one with a different energy spectrum. On the other hand, we explore the kind of phenomena that take place at the source in these two particular events. In contrast with other methods based on the temporal synchronization between electromagnetic emissions of flares and coronal mass ejections (CME), here we develop an alternative option based on the study of the accelerated particles, by adjusting our theoretical spectra to the observational spectra. The main results of this work are the derivation of the source and acceleration parameters involved in the generation process. These results lead us to construct possible scenarios of particle generation in the source for each one of the two studied GLEs.  相似文献   

5.
1989年9月29日发生了30多年来最大的地面宇宙线增强事件(即GLE事件)。本文描述这次世界范围内的大事件的主要特征,包括强度时间变化、能谱、各向异性以及地理位置上的分布特征,并简述了这次事件对地球环境产生的影响。   相似文献   

6.
Close to the current solar activity minimum, two large solar cosmic ray ground-level enhancements (GLE) were recorded by the worldwide network of neutron monitors (NM). The enormous GLE on 20 January 2005 is the largest increase observed since the famous GLE in 1956, and the solar cosmic-ray event recorded on 13 December 2006 is among the largest in solar cycle 23. From the recordings of the NMs during the two GLEs, we determined the characteristics of the solar particle flux near Earth.  相似文献   

7.
One of the greatest and most famous increase of solar cosmic rays over the neutron monitor epoch is the ground level enhancement in 1956. All future proton events are inevitable when compared with this one and therefore it is necessary to provide the efficiency of such a comparison derived from the existing data. In this paper, we return to the analysis of ground level observations on 23 February 1956 in order to model more precisely the solar cosmic ray behaviour. The extremely high magnitude of this effect allowed various spectral characteristics of solar cosmic rays, their anisotropy, differential and integral proton fluxes, and angular distribution of the source of solar particle anisotropy to be obtained with sufficient accuracy on the basis of available data from 13 neutron monitors. The most outstanding feature of this event was a narrow and extremely intensive beam of ultra relativistic particles arriving at Earth at the beginning of the event. This unique beam was not long and its width did not exceed 30–40°, thus, its contribution to solar particle density was not significant. Many features of this GLE are apparently explained by the peculiarity of particle interplanetary propagation from a remote (limb or behind of limb) source.  相似文献   

8.
The relativistic solar proton event of 6 November 1997 resulted in the first ground-level enhancement (GLE) of solar cycle 23. The earliest onset was around 1215 UT but was up to 15 minutes later at some neutron monitor locations. The time of maximum intensity also varied significantly over the world-wide neutron monitor network. The modeled particle distributions and spectra are presented. The apparent particle arrival direction is found to be largely consistent with propagation outward from the sun along interplanetary magnetic field lines.  相似文献   

9.
The radiation environment in the troposphere of the Earth is governed by cosmic rays of galactic and solar origin. During major solar energetic particles events the radiation environment changes dramatically. As a results the risk of biological effects due to exposure to ionizing radiation of aircrew increases. Here we present a numerical model for computation of absorbed dose in air due to cosmic rays of galactic and solar origin. It is applied for computation of radiation environment at flight altitude in the equatorial region during several major ground level enhancements, namely GLE65 on 28 October 2003, GLE69 on 20 January 2005 and GLE70 on 13 December 2006. The model is based on a full Monte Carlo simulation of cosmic ray induced atmospheric cascade. The cascade simulation is carried out with CORSIKA 6.990 code with corresponding hadron generators FLUKA 2011 and QGSJET II. The contribution of different cascade components, namely electromagnetic, hadron and muon is explicitly obtained. The spectra of arriving solar energetic particles are calculated from ground level measurements with neutron monitors and satellite data from GOES. The obtained results are discussed.  相似文献   

10.
Some unknown historical facts of cosmic ray studies in the north-east of the former Soviet Union related to the Yakutsk scientific group are reported for the benefit of the international scientific community. It focuses on the founders of Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of Russian Academy of Sciences. A chronology of measurements of cosmic ray intensity variations since 1949 in Yakutia (Sakha Republic; NE Siberia) is given. In particular, for the first time the data of the first solar cosmic ray event registered at Yakutsk (GLE04), with a small ionization chamber S-2 (volume: 20 L) are presented. Moreover, the data of the large ionization chamber ASK-1 (volume: 950 L) for the 1953–2003 period useful for specialists in the field of cosmic ray variations are also shown.  相似文献   

11.
There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.  相似文献   

12.
我国“风云一号(B)”气象卫星于1990年9月3日发射入轨,该星载有粒子成分监测器,用来探测空间粒子辐射环境,其中包括测量太阳耀斑时产生的太阳质子事件及其重粒子丰度;银河宇宙线异常成分与强度;内辐射带磁异常区的粒子通量及重粒子成分,“风云一号(B)”卫星运行半年来,我们已获取了上述有关的粒子辐射资料,在卫星上获得这些资料在我国尚属首次,本文主要分析观测到的太阳质子事件。  相似文献   

13.
During the recent ground level enhancement of 13 December 2006, also known as GLE70, solar cosmic ray particles of energy bigger that ∼500 MeV/nucleon propagated inside the Earth’s magnetosphere and finally accessed low-altitude satellites and ground level neutron monitors. The magnitude and the characteristics of this event registered at different neutron monitor stations of the worldwide network can be interpreted adequately on the basis of an estimation of the solar particle trajectories in the near Earth interplanetary space. In this work, an extended representation of the Earth’s magnetic field was realized applying the Tsyganenko 1989 model. Using a numerical back-tracing technique the solar proton trajectories inside the magnetospheric field of the Earth were calculated for a variety of particles, initializing their travel at different locations, covering a wide range of energies. In this way, the asymptotic directions of viewing were calculated for a significant number of neutron monitor stations, providing crucial information on the Earth’s “magnetospheric optics” for primary solar cosmic rays, on the top of the atmosphere, during the big solar event of December 2006. The neutron monitor network has been treated, therefore, as a multidimensional tool that gives insights into the arrival directions of solar cosmic ray particles as well as their spatial and energy distributions during extreme solar events.  相似文献   

14.
An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The first separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The first challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver requires knowledge of the orbital state, which is obtained during the navigation state reconstruction event. Since the direction of the delta-v of the SEP1 maneuver is a random variable with respect to the Local Vertical Local Horizontal (LVLH) coordinate system, calculating the required SEP2 burn is a challenge. This problem was solved using elements of neural network theory for model-free function approximation and decision making.  相似文献   

15.
During extreme solar events such as big flares or/and energetic coronal mass ejections (CMEs) high energy particles are accelerated by the shocks formed in front of fast interplanetary coronal mass ejections (ICMEs). The ICMEs (and their sheaths) also give rise to large geomagnetic storms which have significant effects on the Earth’s environment and human life. Around 14 solar cosmic ray ground level enhancement (GLE) events in solar cycle 23 we examined the cosmic ray variation, solar wind speed, ions density, interplanetary magnetic field, and geomagnetic disturbance storm time index (Dst). We found that all but one of GLEs are always followed by a geomagnetic storm with Dst  −50 nT within 1–5 days later. Most(10/14) geomagnetic storms have Dst index  −100  nT therefore generally belong to strong geomagnetic storms. This suggests that GLE event prediction of geomagnetic storms is 93% for moderate storms and 71% for large storms when geomagnetic storms preceded by GLEs. All Dst depressions are associated with cosmic ray decreases which occur nearly simultaneously with geomagnetic storms. We also investigated the interplanetary plasma features. Most geomagnetic storm correspond significant periods of southward Bz and in close to 80% of the cases that the Bz was first northward then turning southward after storm sudden commencement (SSC). Plasma flow speed, ion number density and interplanetary plasma temperature near 1 AU also have a peak at interplanetary shock arrival. Solar cause and energetic particle signatures of large geomagnetic storms and a possible prediction scheme are discussed.  相似文献   

16.
High-energy solar particles, produced in association with solar flares and coronal mass ejections, occasionally bombard the earth's atmosphere. resulting in radiation intensities additional to the background cosmic radiation. Access of these particles to the earth's vicinity during times of geomagnetic disturbances are not adequately described by using static geomagnetic field models. These solar fluxes are also often distributed non uniformly in space, so that fluxes measured by satellites obtained at great distances from the earth and which sample large volumes of space around the earth cannot be used to predict fluxes locally at the earth's surface. We present here a method which uses the ground-level neutron monitor counting rates as adjoint sources of the flux in the atmosphere immediately above them to obtain solar-particle effective dose rates as a function of position over the earth's surface. We have applied this approach to the large September 29-30, 1989 ground-level event (designated GLE 42) to obtain the magnitude and distribution of the solar-particle effective dose rate from an atypically large event. The results of these calculations clearly show the effect of the softer particle spectra associated with solar particle events, as compared with galactic cosmic rays, results in a greater sensitivity to the geomagnetic field, and, unlike cosmic rays, the near-absence of a "knee" near 60 degrees geomagnetic latitude.  相似文献   

17.
In this study we applied again to the outstanding solar particle event of 23 February 1956, the largest one in the entire history of observations of solar cosmic rays. Due to significant improvement of the analysis/modeling techniques and new understanding of physical processes in the solar atmosphere and interplanetary space, a possibility arises to interpret the old data in the light of modern concept of multiple particle acceleration at/near the Sun. In our new analysis the data of available then neutron monitors and muon telescopes are used. The technique of the analysis includes: (a) calculation of asymptotic cones of ground-based detectors; (b) modeling of cosmic ray detector responses at variable parameters of the flux of solar relativistic protons; (c) determination of primary solar proton parameters outside magnetosphere by comparison of computed responses with observations. Certain evidence was obtained that the flux of relativistic solar protons consisted of two distinct components: prompt and delayed ones. The prompt component with exponential energy spectrum caused a giant impulse-like increase at a number of European cosmic ray stations. The delayed component had a power-law spectrum and was a cause of gradual increase at cosmic ray stations in the North American region. A numerical simulation of the proton acceleration in the vicinity of the magnetic reconnection region brings to the proton spectrum with exponential dependence on energy. This agrees with observational data for the prompt component. It is also shown that the huge increase in ∼5000% on neutron monitors was due to the prompt component only with the exponential proton spectrum. The power-law spectrum of comparable intensity gave considerably smaller effect.  相似文献   

18.
The relativistic solar particle event of 4 May 1960, resulting in a cosmic ray ground level enhancement, occurred well before modern analysis techniques were available. We have located surviving data from 23 neutron monitors and have used these to estimate the spectrum, mean arrival direction and particle pitch angle distribution as the event progressed. We find that the apparent particle arrival direction was at equatorial latitudes, over northern South America, in contrast to contemporary analyses that proposed it to be over North America. Our modified power law spectra are broadly consistent with earlier results. Data from stations above sea level need to be corrected for altitude using a two-attenuation length technique. The standard method involves comparison of data from two relatively close stations at significantly different altitude. We have shown that this method may be unreliable in cases, such as this, of quite sharp anisotropy.  相似文献   

19.
2006年12月13日太阳射电暴对GPS观测的影响   总被引:1,自引:1,他引:0  
日地空间环境不仅影响航天器运行和安全, 也是导航、定位和通信等无线 电应用系统主要的误差源. 其中来自太阳L波段的射电暴被认为是全球导航卫星 系统(GNSS)稳定和性能的潜在威胁因素, 当L波段射电爆发达到一定阈值时, 将给用户带来不同程度的射电噪声干扰, 严重时会引起接收机失锁和定位服务 中断. 本文对2006年12月13日太阳射电暴对GPS造成的影响进行了研究, 利用太阳射电 观测数据、L波段闪烁观测数据和向阳面不同区域的GPS观测网数据, 分析 GPS观测对射电暴的响应. 结果表明, 此次事件对GPS观测产生了明显的影响, 射 电暴期间GPS发生幅度闪烁事件和明显失锁现象, 多个台站上空的多颗GPS 卫星 信号完全中断长达6min左右, 且多个台站上空锁定的卫星数目小于4颗, 使 得GPS定位完全失效. 相对而言, 射电暴期间日下点附近的GPS台站受到的影响 比远离日下点的大.   相似文献   

20.
This work investigates the influence of coronal mass ejection (CME) on the time derivatives of horizontal geomagnetic and geoelectric fields, proxy parameters for identifying GICs. 16 events were identified for the year 2003 from the CORONAS-PHOTON spacecraft. Five of the events (May 29, June 9, October 28, October 29, and November 4) were extensively discussed over four magnetic observatories, were analyzed using the time derivatives of the horizontal geomagnetic (dH/dt) and geoelectric (EH) fields obtained from data of the INTERMAGNET network. It was observed that energy distributions of the wavelet power spectrum of the horizontal geoelectric field are noticed at the nighttime on both 29 May and 9 June 2003 across the stations. Daytime and nighttime intensification of energy distribution of the wavelet power spectrum of the horizontal geoelectric field are observed on both 28 and 29 October 2003 due to strong westward electrojet. The 4 November 2003 event depicts daytime amplification of energy distributions of the wavelet power spectrum across the stations. The highest correlation magnitude is obtained in the event of 4 November 2003 between dH/dt and EH relationships during the intense solar flare of class X 17.4. We observed that the correlation magnitude between dH/dt and EH increases with increase in CME activity. We concluded that the response of the surface impedance model for different stations plays a key role in determining the surface electric field strength, due to large electric field changes at different stations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号