首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
PHD filters of higher order in target number   总被引:14,自引:0,他引:14  
The multitarget recursive Bayes nonlinear filter is the theoretically optimal approach to multisensor-multitarget detection, tracking, and identification. For applications in which this filter is appropriate, it is likely to be tractable for only a small number of targets. In earlier papers we derived closed-form equations for an approximation of this filter based on propagation of a first-order multitarget moment called the probability hypothesis density (PHD). In a recent paper, Erdinc, Willett, and Bar-Shalom argued for the need for a PHD-type filter which remains first-order in the states of individual targets, but which is higher-order in target number. In this paper we show that this is indeed possible. We derive a closed-form cardinalized PHD (CPHD) filter, which propagates not only the PHD but also the entire probability distribution on target number.  相似文献   

2.
Tracking multiple targets with uncertain target dynamics is a difficult problem, especially with nonlinear state and/or measurement equations. With multiple targets, representing the full posterior distribution over target states is not practical. The problem becomes even more complicated when the number of targets varies, in which case the dimensionality of the state space itself becomes a discrete random variable. The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment (the PHD) of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems with a varying number of targets. The integral of PHD in any region of the state space gives the expected number of targets in that region. With maneuvering targets, detecting and tracking the changes in the target motion model also become important. The target dynamic model uncertainty can be resolved by assuming multiple models for possible motion modes and then combining the mode-dependent estimates in a manner similar to the one used in the interacting multiple model (IMM) estimator. This paper propose a multiple-model implementation of the PHD filter, which approximates the PHD by a set of weighted random samples propagated over time using sequential Monte Carlo (SMC) methods. The resulting filter can handle nonlinear, non-Gaussian dynamics with uncertain model parameters in multisensor-multitarget tracking scenarios. Simulation results are presented to show the effectiveness of the proposed filter over single-model PHD filters.  相似文献   

3.
Random finite sets (RFSs) are natural representations of multitarget states and observations that allow multisensor multitarget filtering to fit in the unifying random set framework for data fusion. Although the foundation has been established in the form of finite set statistics (FISST), its relationship to conventional probability is not clear. Furthermore, optimal Bayesian multitarget filtering is not yet practical due to the inherent computational hurdle. Even the probability hypothesis density (PHD) filter, which propagates only the first moment (or PHD) instead of the full multitarget posterior, still involves multiple integrals with no closed forms in general. This article establishes the relationship between FISST and conventional probability that leads to the development of a sequential Monte Carlo (SMC) multitarget filter. In addition, an SMC implementation of the PHD filter is proposed and demonstrated on a number of simulated scenarios. Both of the proposed filters are suitable for problems involving nonlinear nonGaussian dynamics. Convergence results for these filters are also established.  相似文献   

4.
The probability hypothesis density (PHD) filter is a practical alternative to the optimal Bayesian multi-target Alter based on finite set statistics. It propagates the PHD function, a first-order moment of the full multi-target posterior density. The peaks of the PHD function give estimates of target states. However, the PHD filter keeps no record of target identities and hence does not produce track-valued estimates of individual targets. We propose two different schemes according to which PHD filter can provide track-valued estimates of individual targets. Both schemes use the probabilistic data-association functionality albeit in different ways. In the first scheme, the outputs of the PHD filter are partitioned into tracks by performing track-to-estimate association. The second scheme uses the PHD filter as a clutter filter to eliminate some of the clutter from the measurement set before it is subjected to existing data association techniques. In both schemes, the PHD filter effectively reduces the size of the data that would be subject to data association. We consider the use of multiple hypothesis tracking (MHT) for the purpose of data association. The performance of the proposed schemes are discussed and compared with that of MHT.  相似文献   

5.
Track labeling and PHD filter for multitarget tracking   总被引:5,自引:0,他引:5  
Multiple target tracking requires data association that operates in conjunction with filtering. When multiple targets are closely spaced, the conventional approaches (as, e.g., MHT/assignment) may not give satisfactory results. This is mainly because of the difficulty in deciding what the number of targets is. Recently, the probability hypothesis density (PHD) filter has been proposed and particle filtering techniques have been developed to implement the PHD filter. In the particle PHD filter, the track labeling problem is not considered, i.e., the PHD is obtained only for a frame at a time, and it is very difficult to perform the multipeak extraction, particularly in high clutter environments. A track labeling method combined with the PHD approach, as well as considering the finite resolution, is proposed here for multitarget tracking, i.e., we keep a separate tracker for each target, use the PHD in the resolution cell to get the estimated number and locations of the targets at each time step, and then perform the track labeling ("peak-to-track" association), whose results can provide information for PHD peak extraction at the next time step. Besides, by keeping a separate tracker for each target, our approach provides more information than the standard particle PHD filter. For example, in group target tracking, if we are interested in the motion of a specific target, we can track this target, which is not possible for the standard particle PHD filter, since the standard particle PHD filter does not keep track labels. Using our approach, multitarget tracking can be performed with automatic track initiation, maintenance, spawning, merging, and termination  相似文献   

6.
Multi-EAP:Extended EAP for multi-estimate extraction for SMC-PHD filter   总被引:1,自引:0,他引:1  
The ability to extract state-estimates for each target of a multi-target posterior, referred to as multi-estimate extraction (MEE), is an essential requirement for a multi-target filter, whose key performance assessments are based on accuracy, computational efficiency and reliability. The probability hypothesis density (PHD) filter, implemented by the sequential Monte Carlo approach, affords a computationally efficient solution to general multi-target filtering for a time-varying num-ber of targets, but leaves no clue for optimal MEE. In this paper, new data association techniques are proposed to distinguish real measurements of targets from clutter, as well as to associate par-ticles with measurements. The MEE problem is then formulated as a family of parallel single-estimate extraction problems, facilitating the use of the classic expected a posteriori (EAP) estima-tor, namely the multi-EAP (MEAP) estimator. The resulting MEAP estimator is free of iterative clustering computation, computes quickly and yields accurate and reliable estimates. Typical sim-ulation scenarios are employed to demonstrate the superiority of the MEAP estimator over existing methods in terms of faster processing speed and better estimation accuracy.  相似文献   

7.
In Bayesian multi-target fltering,knowledge of measurement noise variance is very important.Signifcant mismatches in noise parameters will result in biased estimates.In this paper,a new particle flter for a probability hypothesis density(PHD)flter handling unknown measurement noise variances is proposed.The approach is based on marginalizing the unknown parameters out of the posterior distribution by using variational Bayesian(VB)methods.Moreover,the sequential Monte Carlo method is used to approximate the posterior intensity considering non-linear and non-Gaussian conditions.Unlike other particle flters for this challenging class of PHD flters,the proposed method can adaptively learn the unknown and time-varying noise variances while fltering.Simulation results show that the proposed method improves estimation accuracy in terms of both the number of targets and their states.  相似文献   

8.
多目标跟踪的概率假设密度粒子滤波   总被引:5,自引:1,他引:5       下载免费PDF全文
在多目标跟踪中,当目标数很大时,目标状态的联合分布的计算量会非常大。如果目标独立运动,可用各目标分别滤波来代替,但这要求考虑数据互联问题。文章介绍一种可以解决计算量问题的方法,只需计算联合分布的一阶矩——概率假设密度(PHD),PHD在任意区域S上的积分是S内目标数的期望值。因未记录目标身份,避免了数据互联问题。仿真中,传感器为被动雷达,目标观测值为距离、角度及速度时,对上述的PHD滤波进行了粒子实现,并对观测值是否相关的不同情况进行比较。PHD粒子滤波应用在非线性模型的多目标跟踪,实验结果表明,滤波可以稳健跟踪目标数为变数的情况,得到了接近真实情况的结果。  相似文献   

9.
Particle filter approaches for approximating the first-order moment of a joint, or probability hypothesis density (PHD), have demonstrated a feasible suboptimal method for tracking a time-varying number of targets in real-time. We consider two techniques for estimating the target states at each iteration, namely k-means clustering and mixture modelling via the expectation-maximization (EM) algorithm. We present novel techniques for associating the targets between frames to enable track continuity.  相似文献   

10.
This paper studies the dynamic estimation problem for multitarget tracking. A novel gating strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiveness of the probability hypothesis density(PHD) filter. Firstly, a measurement-driven mechanism based on this gating technique is designed to classify the measurements. In this mechanism, only the measurements for the existing targets are considered in the update step of the existing targets while the measurements of newborn targets are used for exploring newborn targets. Secondly, the gating strategy enables the development of a heuristic state estimation algorithm when sequential Monte Carlo(SMC) implementation of the PHD filter is investigated, where the measurements are used to drive the particle clustering within the space gate.The resulting PHD filter can achieve a more robust and accurate estimation of the existing targets by reducing the interference from clutter. Moreover, the target birth intensity can be adaptive to detect newborn targets, which is in accordance with the birth measurements. Simulation results demonstrate the computational efficiency and tracking performance of the proposed algorithm.  相似文献   

11.
Rao-blackwellised particle filtering in random set multitarget tracking   总被引:1,自引:0,他引:1  
This article introduces a Rao-Blackwellised particle filtering (RBPF) approach in the finite set statistics (FISST) multitarget tracking framework. The RBPF approach is proposed in such a case, where each sensor is assumed to produce a sequence of detection reports each containing either one single-target measurement, or a "no detection" report. The tests cover two different measurement models: a linear-Gaussian measurement model, and a nonlinear model linearised in the extended Kalman filter (EKF) scheme. In the tests, Rao-Blackwellisation resulted in a significant reduction of the errors of the FISST estimators when compared with a previously proposed direct particle implementation. In addition, the RBPF approach was shown to be applicable in nonlinear bearings-only multitarget tracking.  相似文献   

12.
A Gaussian Mixture PHD Filter for Jump Markov System Models   总被引:11,自引:0,他引:11  
The probability hypothesis density (PHD) filter is an attractive approach to tracking an unknown and time-varying number of targets in the presence of data association uncertainty, clutter, noise, and detection uncertainty. The PHD filter admits a closed-form solution for a linear Gaussian multi-target model. However, this model is not general enough to accommodate maneuvering targets that switch between several models. In this paper, we generalize the notion of linear jump Markov systems to the multiple target case to accommodate births, deaths, and switching dynamics. We then derive a closed-form solution to the PHD recursion for the proposed linear Gaussian jump Markov multi-target model. Based on this an efficient method for tracking multiple maneuvering targets that switch between a set of linear Gaussian models is developed. An analytic implementation of the PHD filter using statistical linear regression technique is also proposed for targets that switch between a set of nonlinear models. We demonstrate through simulations that the proposed PHD filters are effective in tracking multiple maneuvering targets.  相似文献   

13.
邱昊  黄高明  左炜  高俊 《航空学报》2015,36(9):3012-3019
针对现有随机有限集(RFS)滤波器在低信噪比环境下对衍生目标跟踪性能严重下降的问题,提出了一种基于Delta扩展标签多伯努利(δ-GLMB)滤波器的改进算法。基于随机集理论和伯努利衍生模型,推导了新的预测方程,并采用了假设裁剪及分组手段和多伯努利近似技术以降低算法的计算量。针对假设增多引起的虚警问题,将多帧平滑思想和算法相结合,利用标签信息对新目标进行回溯处理。仿真结果表明,所提算法能对目标数目进行无偏估计,在低探测概率和强杂波环境下性能明显优于概率假设密度(PHD)算法,计算开销在衍生初始阶段增长快于PHD,目标较分散时低于PHD。  相似文献   

14.
Multitarget tracking using the joint multitarget probability density   总被引:5,自引:0,他引:5  
This work addresses the problem of tracking multiple moving targets by recursively estimating the joint multitarget probability density (JMPD). Estimation of the JMPD is done in a Bayesian framework and provides a method for tracking multiple targets which allows nonlinear target motion and measurement to state coupling as well as nonGaussian target state densities. The JMPD technique simultaneously estimates both the target states and the number of targets in the surveillance region based on the set of measurements made. We give an implementation of the JMPD method based on particle filtering techniques and provide an adaptive sampling scheme which explicitly models the multitarget nature of the problem. We show that this implementation of the JMPD technique provides a natural way to track a collection of targets, is computationally tractable, and performs well under difficult conditions such as target crossing, convoy movement, and low measurement signal-to-noise ratio (SNR).  相似文献   

15.
Rao-Blackwellized粒子概率假设密度滤波算法   总被引:6,自引:1,他引:5  
针对多目标跟踪(MTT),提出一种新的基于随机集的滤波算法,称为Rao-Blackwellized粒子概率假设密度滤波算法(RBP-PHDF)。算法运用Rao-Blackwellized思想,通过挖掘分析“混合线性/非线性模型”的结构,采用序列蒙特卡罗(SMC)方法预测与估计概率假设密度(PHD)迭代式中各个目标的非线性状态,并利用非线性状态粒子中包含的信息,使用卡尔曼滤波器(KF)对线性状态进行预测与估计。以更好地估计PHD进而提高各目标状态估计精度。分析与MTT仿真的结果表明,在相同的仿真条件下,与现有序列蒙特卡罗概率假设密度滤波算法(SMC-PHDF)相比,RBP-PHDF在降低粒子维数、减少计算量的同时,有效提升了估计精度。  相似文献   

16.
徐从安  刘瑜  熊伟  宋瑞华  李天梅 《航空学报》2015,36(12):3957-3969
传统粒子概率假设密度(PHD)滤波器假定新生目标强度已知,当新生目标在整个观测区域随机出现时不再适用。为解决新生目标强度未知时的多目标跟踪问题,提出了一种基于量测信息的双门限粒子PHD(PHD-DT)滤波器。首先基于似然函数设定门限对存活目标量测进行粗提取,利用上一时刻的目标估计值构建圆形波门进行精细提取,并对门限设定方法进行分析,然后根据提取结果对目标PHD进行分解,得到存活目标和新生目标的PHD预测及更新表达式,最后给出了滤波器的实现方法并同基于量测驱动的PHD(PHD-M)滤波器和Logic+联合概率数据互联(JPDA)方法进行了仿真对比。仿真结果表明,在新生目标强度未知时,PHD-DT可有效避免Logic+JPDA在杂波背景下因航迹起始错误带来的估计误差,并较好地解决了PHD-M的目标数目过估问题,多目标估计性能更优,且杂波越强性能优势越明显。  相似文献   

17.
It is understood that the forward-backward probability hypothesis density (PHD) smoothing algorithms proposed recently can significantly improve state estimation of targets. However, our analyses in this paper show that they cannot give a good cardinality (i.e., the number of targets) estimate. This is because backward smoothing ignores the effect of temporary track drop- ping caused by forward filtering and/or anomalous smoothing resulted from deaths of targets. To cope with such a problem, a novel PHD smoothing algorithm, called the variable-lag PHD smoother, in which a detection process used to identify whether the filtered cardinality varies within the smooth lag is added before backward smoothing, is developed here. The analytical results show that the proposed smoother can almost eliminate the influences of temporary track dropping and anomalous smoothing, while both the cardinality and the state estimations can significantly be improved. Simulation results on two multi-target tracking scenarios verify the effectiveness of the proposed smoother.  相似文献   

18.
罗少华  徐晖  徐洋  安玮 《航空学报》2012,33(7):1296-1304
基于序列蒙特卡罗方法的经典多模概率假设密度滤波方法及其各种衍生方法,在预测过程中依据多个并行的状态转移模型,通过将大量粒子散布到下一时刻目标所有可能出现的状态空间实现目标状态的捕获,造成计算量大、目标跟踪精度差。为此,提出一种改进的多模粒子概率假设密度机动目标跟踪方法。该方法利用最新量测信息估计目标运动模型概率及模型参数,并将估计得到的目标模型应用到粒子概率假设密度滤波方法的预测过程中生成预测粒子,从而将大部分粒子聚合在目标最可能出现的状态空间邻域中,实现粒子的有效利用。数值仿真表明,所提方法不仅显著地减少了目标丢失个数,而且提高了目标跟踪精度。  相似文献   

19.
The Gaussian mixture probability hypothesis density (GM-PHD) recursion is a closed-form solution to the probability hypothesis density (PHD) recursion, which was proposed for jointly estimating the time-varying number of targets and their states from a sequence of noisy measurement sets in the presence of data association uncertainty, clutter, and miss-detection. However the GM-PHD filter does not provide identities of individual target state estimates, that are needed to construct tracks of individual targets. In this paper, we propose a new multi-target tracker based on the GM-PHD filter, which gives the association amongst state estimates of targets over time and provides track labels. Various issues regarding initiating, propagating and terminating tracks are discussed. Furthermore, we also propose a technique for resolving identities of targets in close proximity, which the PHD filter is unable to do on its own.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号