首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
Total solar irradiance measurements by ERB/Nimbus-7. A review of nine years   总被引:1,自引:0,他引:1  
The advent of reliable extraterrestrial solar irradiance measurements from satellites has supplied the impetus for new research in solar physics and solar-terrestrial relationships. The records for the principal experiments now extend beyond nine years. The Nimbus-7 measurements began in November 1978 and the Solar Maximum Mission (SMM) results started in February 1980. Both the ERB experiment of Nimbus-7 and the ACRIM experiment of SMM are still operational as of this writing (June 1988). We describe the nine-year Nimbus-7 total solar irradiance data set and compare it with similar data sets from the SMM and other satellite solar monitoring programs. Long-term downward trends of less than 0.02 % per year had been noted during the decaying portion of solar cycle 21 with indications that a leveling off and possible reversal of the trend was being experienced as we enter the new cycle. It had been demonstrated that fluctuations in the data over shorter periods corresponded to solar activity, from a primary discovery of irradiance depletions in times of building large sunspot groups to more subtle effects on the scale of solar rotation. Studies of the frequency spectra of the measurements have advanced the interest in helioseismology or mode analysis. Studies of photospheric activity have advanced by modelling of the sunspot blocking and photospheric brightening versus the measured irradiance. The theories are being extended to longer time-scales which indicate that solar irradiance is higher near solar cycle maximum, as defined by activity, and somewhat lower during the period between cycles. While measurements of total solar irradiance, the solar constant, alone cannot be employed to answer all of the questions of solar physics or helioclimatology, these long-term, high-precision data sets are valuable to both disciplines. The continuation of such measurements to more meaningful, longer time-scales should have a high priority in the international space community.  相似文献   

2.
In paleoclimate studies, cosmogenic isotopes are frequently used as proxy indicators of past variations in solar irradiance on centennial and millennial timescales. These isotopes are spallation products of galactic cosmic rays (GCRs) impacting Earth's atmosphere, which are deposited and stored in terrestrial reservoirs such as ice sheets, ocean sediments and tree trunks. On timescales shorter than the variations in the geomagnetic field, they are modulated by the heliosphere and thus they are, strictly speaking, an index of heliospheric variability rather than one of solar variability. Strong evidence of climate variations associated with the production (as opposed to the deposition) of these isotopes is emerging. This raises a vital question: do cosmic rays have a direct influence on climate or are they a good proxy indicator for another factor that does (such as the total or spectral solar irradiance)? The former possibility raises further questions about the possible growth of air ions generated by cosmic rays into cloud condensation nuclei and/or the modulation of the global thunderstorm electric circuit. The latter possibility requires new understanding about the required relationship between the heliospheric magnetic fields that scatter cosmic rays and the photospheric magnetic fields which modulate solar irradiance.  相似文献   

3.
Solanki  S.K.  Fligge  M. 《Space Science Reviews》2000,94(1-2):127-138
Accurate measurements of solar irradiance started in 1978, but a much longer time series is needed in order to uncover a possible influence on the Earth's climate. In order to reconstruct the irradiance prior to 1978 we require both an understanding of the underlying causes of solar irradiance variability as well as data describing the state of the Sun (in particular its magnetic field) at the relevant epochs.Evidence is accumulating that on the time-scale of the solar cycle or less, variations in solar irradiance are produced mainly by changes in the amount and distribution of magnetic flux on the solar surface. The main solar features contributing to a darkening of the Sun are sunspots, while active-region faculae and the network lead to a brightening. There is also increasing evidence for secular changes of the solar magnetic field and the associated of solar brightness variability. In part the behavior of sun-like stars is used as a guide of such secular changes.Under the assumption that solar irradiance variations are due to solar surface magnetism on all relevant time scales it is possible to reconstruct the irradiance with some reliability from today to around 1874, and with lower accuracy back to the Maunder minimum. One major problem is the decreasing amount and accuracy of the relevant data with age. In this review the various reconstructions of past solar irradiance are presented and the assumptions underlying them are scrutinized.  相似文献   

4.
Fligge  M.  Solanki  S.K.  Unruh  Y.C. 《Space Science Reviews》2000,94(1-2):139-144
On time-scales of the solar rotation most of the solar irradiance variations are caused by the changing distribution of solar surface magnetic features. We model these short-term irradiance variations using calculations of sunspot and facular contrasts as a function of wavelength and limb angle on the Sun. The position of active regions on the solar disc is derived from the MDI magnetograms. The reconstructed irradiance variations are compared with total and spectral irradiance measurements obtained by the VIRGO experiment on SOHO.  相似文献   

5.
Measurements of solar total irradiance and its variability   总被引:1,自引:0,他引:1  
The development of electrically self calibrated cavity pyrheliometric instrumentation that occurred in the early 20th century provided the technological base for experiments to detect variability of the solar total irradiance. Experiments from ground based observatories, aircraft and balloons during the 1st half of the 20th century were unable to achieve sufficient accuracy or long term precision to unambiguously detect irradiance variations of solar origin. Refinements in pyrheliometric technology during the 1960's and 1970's and the accessibility of extended experimental opportunities above the Earth's atmosphere in recent years have provided the first direct observations of solar total irradiance variability and provided the cornerstone observations of a long term database on solar irradiance. A program of solar irradiance monitoring has evolved to sustain the database over at least 22 years, corresponding to a single cycle of solar magnetic activity, and the shortest well identified cycle of climate variation. Direct links between total irradiance variations, solar magnetic activity and the solar global 5 min oscillation phenomena have been derived from recent space flight observations by the SMM/ACRIM I experiment.  相似文献   

6.
Kuhn  J.R.  Floyd  L.  Fröhlich  C.  Pap  J.M. 《Space Science Reviews》2000,94(1-2):169-176

Despite 20 years of total solar irradiance measurements from space, the lack of high precision spatially resolved observations limits definitive answers to even simple questions like ``Are the solar irradiance changes caused solely by magnetic fields perturbing the radiative flux at the photosphere?" More subtle questions like how the aspheric structure of the sun changes with the magnetic cycle are only now beginning to be addressed with new tools like p-mode helioseismology. Solar 5-min oscillation studies have yielded precise information on the mean radial interior solar structure and some knowledge about the rotational and thermal solar asphericity. Unfortunately this progress has not been enough to generate a self-consistent theory for why the solar irradiance and luminosity vary with the magnetic cycle. We need sharper tools to describe and understand the sun's global aspheric response to its internal dynamo, and we need to be able to measure the solar cycle manifestation of the magnetic cycle on entropy transport from the interior to the photosphere in much the same way that we study the fundamentally more complex problem of magnetic flux transport from the solar interior. A space experiment called the Solar Physics Explorer for Radius, Irradiance and Shape (SPHERIS) and in particular its Astrometric and Photometric Telescope (APT) component will accomplish these goals.

  相似文献   

7.
Corotating Interaction Regions (CIRs) form as a consequence of the compression of the solar wind at the interface between fast speed streams and slow streams. Dynamic interaction of solar wind streams is a general feature of the heliospheric medium; when the sources of the solar wind streams are relatively stable, the interaction regions form a pattern which corotates with the Sun. The regions of origin of the high speed solar wind streams have been clearly identified as the coronal holes with their open magnetic field structures. The origin of the slow speed solar wind is less clear; slow streams may well originate from a range of coronal configurations adjacent to, or above magnetically closed structures. This article addresses the coronal origin of the stable pattern of solar wind streams which leads to the formation of CIRs. In particular, coronal models based on photospheric measurements are reviewed; we also examine the observations of kinematic and compositional solar wind features at 1 AU, their appearance in the stream interfaces (SIs) of CIRs, and their relationship to the structure of the solar surface and the inner corona; finally we summarise the Helios observations in the inner heliosphere of CIRs and their precursors to give a link between the optical observations on their solar origin and the in-situ plasma observations at 1 AU after their formation. The most important question that remains to be answered concerning the solar origin of CIRs is related to the origin and morphology of the slow solar wind. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Unruh  Y.C.  Solanki  S.K.  Fligge  M. 《Space Science Reviews》2000,94(1-2):145-152
Solar irradiance variations show a strong temporal and spectral dependence. The progression of the Sun through its activity cycle as well as solar rotation are mirrored in the irradiance variations. The spectral dependence is such that the variations are several magnitudes larger in the EUV than in the visible or infrared.We present a simple 3-component model that is based on the assumption that changes in the solar flux are exclusively due to changes in spot and facular coverage. We compare our model to observations of the spectral solar irradiance variations.Despite its simplicity, we find that the agreement between our model and the observations is surprisingly good. We also explore the reliability and the limitations of our approach by comparing observations of the solar facular contrast and of the changes in spectral line depths with our calculations.  相似文献   

9.
Transient solar activities are defined in this paper as explosive releases of magnetic energy in the solar atmosphere. By photospheric driving we mean, in this paper, the roles played by the processes observed in the photosphere in accumulating the magnetic energy and complexity in the solar atmosphere. We have tried to clarify the key elements of the driving processes, based on both theoretical considerations and observations.  相似文献   

10.
The Sun–Earth connection is studied using long-term measurements from the Sun and from the Earth. The auroral activity is shown to correlate to high accuracy with the smoothed sunspot numbers. Similarly, both geomagnetic activity and global surface temperature anomaly can be linked to cyclic changes in the solar activity. The interlinked variations in the solar magnetic activity and in the solar irradiance cause effects that can be observed both in the Earth's biosphere and in the electromagnetic environment. The long-term data sets suggest that the increase in geomagnetic activity and surface temperatures are related (at least partially) to longer-term solar variations, which probably include an increasing trend superposed with a cyclic behavior with a period of about 90 years.  相似文献   

11.
We have developed a new model of the coronal and interplanetary magnetic field. The model includes the effects of large-scale horizontal electric currents flowing in the inner corona, of the warped heliospheric current sheet, and of heliospheric volume currents in the super-Alfvenic solar wind. The model determines the interplanetary magnetic field (IMF) strength as well as its polarity from measurements of the photospheric magnetic field. A detailed comparison between the observed and calculated in-ecliptic IMF Bx in Cycles 22, confirms the fitness of the optimal set of free parameters inferred using data in Cycle 21. We can predict the latitudinal gradient of Bx in the declining phase of Cycle 22 and the temporal variation of the amplitude of the radial component of the IMF at various latitudes. The calculated IMF polarity and Bx strength agree best with the in-ecliptic observations when the photospheric field (measured with a 5250Å magnetograph) is scaled up by a factor of two. Ulysses may provide the critical data to improve the model and check these inferences.  相似文献   

12.
Since their discovery, spicules have attracted increased attention as energy/mass bridges between the dense and dynamic photosphere and the tenuous hot solar corona. Mechanical energy of photospheric random and coherent motions can be guided by magnetic field lines, spanning from the interior to the upper parts of the solar atmosphere, in the form of waves and oscillations. Since spicules are one of the most pronounced features of the chromosphere, the energy transport they participate in can be traced by the observations of their oscillatory motions. Oscillations in spicules have been observed for a long time. However the recent high-resolution and high-cadence space and ground based facilities with superb spatial, temporal and spectral capacities brought new aspects in the research of spicule dynamics. Here we review the progress made in imaging and spectroscopic observations of waves and oscillations in spicules. The observations are accompanied by a discussion on theoretical modelling and interpretations of these oscillations. Finally, we embark on the recent developments made on the presence and role of Alfvén and kink waves in spicules. We also address the extensive debate made on the Alfvén versus kink waves in the context of the explanation of the observed transverse oscillations of spicule axes.  相似文献   

13.
As the Ulysses spacecraft approaches its first pass under the south pole of the sun, it is an appropriate time to review our current knowledge and predictions regarding the three dimensional behaviour of the heliospheric magnetic field, in particular at high heliographic latitudes. Optical techniques for measuring the photospheric magnetic field and observations of coronal brightness structures provide indications of the behaviour of the source of the heliospheric field in the corona. As the coronal fields are carried out into the heliosphere by the solar wind, from Parker's model we would expect that the spiral field observed in the equatorial plane should gradually unwind with latitude leading to open, approximately radial, field lines over the polar regions. Predictions of departures from, and models extending this simple picture are discussed. Both the Pioneer and Voyager spacecraft have spent brief periods in the regions above the maximum latitude of the heliospheric current sheet-relevant results from these missions are reviewed as well as results from the early stages of the out-of-ecliptic phase of the Ulysses mission. The configuration of the coronal magnetic field exhibits a strong dependence on the phase of the solar activity cycle. While the forthcoming Ulysses polar passes take place near to solar minimum, the different conditions which might be encountered on a second orbit of the sun at solar maximum are described.  相似文献   

14.
Yan  Yihua 《Space Science Reviews》2003,107(1-2):119-138
Solar magnetic field is believed to play a central role in solar activities and flares, filament eruptions as well as CMEs are due to the magnetic field re-organization and the interaction between the plasma and the field. At present the reliable magnetic field measurements are still confined to a few lower levels like in photosphere and chromosphere. Although IR technique may be applied to observe the coronal field but the technique is not well-established yet. Radio techniques may be applied to diagnose the coronal field but assumptions on radiation mechanisms and propagations are needed. Therefore extrapolation from photospheric data upwards is still the primary method to reconstruction coronal field. Potential field has minimum energy content and a force-free field can provide the required excess energy for energy release like flares, etc. Linear models have undesirable properties and it is expected to consider non-constant-alpha force-free field model. As the recent result indicates that the plasma beta is sandwich-ed distributed above the solar surface (Gary, 2001), care must be taken in modeling the coronal field correctly. As the reconstruction of solar coronal magnetic fields is an open boundary problem, it is desired to apply some technique that can incorporate this property. The boundary element method is a well-established numerical techniques that has been applied to many fields including open-space problems. It has also been applied to solar magnetic field problems for potential, linear force-free field and non-constant-alpha force-free field problems. It may also be extended to consider the non-force-free field problem. Here we introduce the procedure of the boundary element method and show its applications in reconstruction of solar magnetic field problems. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt.  相似文献   

16.
Since 1972, nearly continuous observations of coronal holes and their associated photospheric magnetic fields have been made using a variety of satellite and ground-based equipment. The results of comparisons of these observations are reviewed and it is demonstrated that the structure and evolution of coronal holes is basically governed by the large-scale distribution of photospheric magnetic flux. Non-polar holes form in the decaying remnants of bipolar magnetic regions in areas with a large-scale flux imbalance. There is strong indirect evidence that the magnetic field in coronal holes is always open to interplanetary space but not all open-field regions have associated coronal holes. The well-observed declining phase of the last solar cycle was characterized by stable magnetic field and coronal hole patterns which were associated with recurrent, high-speed wind streams and interplanetary magnetic field patterns at the Earth. The ascending phase of the current cycle has been characterized by transient magnetic field and coronal hole patterns which tend to occur at high solar latitudes. This shift in magnetic field and coronal hole patterns has resulted in a less obvious and more complicated association with high-speed wind streams at the Earth.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Visiting Scientist, Kitt Peak National Observatory.  相似文献   

17.
Lean  J.L. 《Space Science Reviews》2000,94(1-2):39-51
Indices of solar activity relevant for understanding and modelling solar irradiance variability are identified, and their temporal characteristics compared. Reproducing observed solar irradiance variability requires a minimum of two different types of indices — an index for irradiance depletion by sunspots and an index for global irradiance enhancement by faculae and network. When combined with appropriate wavelength-dependent parameterizations of sunspot and facular contrasts and center-to-limb functions, these indices permit the construction of empirical models of daily, monthly and annual solar total and spectral irradiances. The models are compared with observations at selected wavelengths and for the total irradiance. While the models replicate much of the rotational and 11-year cycle variance in contemporary irradiance databases, differences exist because of either the presence of variability mechanisms additional to solar magnetism, or of unresolved instrumental effects in the databases. The reconstruction of solar irradiance in the past requires speculation about the extent of intercycle fluctuations in the global facular index, or in other, as yet unspecified, variability mechanisms.  相似文献   

18.
Recent spectroscopic measurements from instruments on the Solar and Heliospheric Observatory (SOHO) find that the coronal composition above a polar coronal hole is nearly photospheric. However, similar SOHO observations show that in coronal plasmas above quiet equatorial regions low-FIP elements are enhanced by a factor of ≈ 4. In addition, the process of elemental settling in coronal plasmas high above the solar surface was shown to exist. Measurements by the Ulysses spacecraft, which are based on non-spectroscopic particle counting techniques, show that, with the exception of He, the elemental composition of the fast speed solar wind is similar to within a factor of 1.5 to the composition of the photosphere. In contrast, similar measurements in the slow speed wind show that elements with low first ionization potential (FIP < 10 eV) are enhanced, relative to the photosphere, by a factor of 4-5. By combining the SOHO and Ulysses results, ideas related to the origin of the slow speed solar wind are presented. Using spectroscopic measurements by the Solar Ultraviolet Measurement of Emitted Radiation (SUMER) instrument on SOHO the photospheric abundance of He was determined as 8.5 ± 1.3% (Y = 0.248). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The nature of flux emerging through the surface layers of the Sun is examined in the light of new high-resolution magnetic field observations from the Hinode space mission. The combination of vector magnetic field data and visible-light imaging from Hinode support the hypothesis that active region filaments are created as a result of an emerging, twisted flux system. The observations do not present strong evidence for an alternate hypothesis: that the filaments form as a result of localized shear flows at the photospheric level. Examination of the vector magnetic field at very small scales in emerging flux regions suggests that reconnection at the photospheric level and below, followed by submergence of flux, is a likely and essential part of the flux emergence process. The reconnection and flux submergence are driven by granular convection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号