首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new batch-recursive estimator for tracking maneuvering targets from bearings-only measurements in clutter (i.e., for low signal-to-noise ratio (SNR) targets), Standard recursive estimators like the extended Kalman Iter (EKF) suffer from poor convergence and erratic behavior due to the lack of initial target range information, On the other hand, batch estimators cannot handle target maneuvers. In order to rectify these shortcomings, we combine the batch maximum likelihood-probabilistic data association (ML-PDA) estimator with the recursive interacting multiple model (IMM) estimator with probabilistic data association (PDA) to result in better track initialization as well as track maintenance results in the presence of clutter. It is also demonstrated how the batch-recursive estimator can be used for adaptive decisions for ownship maneuvers based on the target state estimation to enhance the target observability. The tracking algorithm is shown to be effective for targets with 8 dB SNR  相似文献   

2.
Survey of maneuvering target tracking. Part V. Multiple-model methods   总被引:8,自引:0,他引:8  
This is the fifth part of a series of papers that provide a comprehensive survey of techniques for tracking maneuvering targets without addressing the so-called measurement-origin uncertainty. Part I and Part II deal with target motion models. Part III covers measurement models and associated techniques. Part IV is concerned with tracking techniques that are based on decisions regarding target maneuvers. This part surveys the multiple-model methods $the use of multiple models (and filters) simultaneously - which is the prevailing approach to maneuvering target tracking in recent years. The survey is presented in a structured way, centered around three generations of algorithms: autonomous, cooperating, and variable structure. It emphasizes the underpinning of each algorithm and covers various issues in algorithm design, application, and performance.  相似文献   

3.
The performance evaluation of multiple-hypothesis, multitarget tracking algorithm is presented. We are primarily interested in target-detection/track-initiation capabilities as measures of performance. Through Monte Carlo simulations, a multiple-hypothesis tracking algorithm was evaluated in terms of 1) probability of establishing a track from target returns and 2) false track density. A radar was chosen as the sensor, and a general multiple-hypothesis, multitarget tracking algorithm was used in the Monte Carlo simulations. The simulation results predict the probability of establishing a track from returns of a target as well as the false track density per scan volume per unit time. The effects of the target radar cross section and the radar power, measured through the mean signal-to-noise ratio (SNR) were studied, as were the effects of detection threshold and track quality threshold. Computational requirements were also investigated  相似文献   

4.
A class of near optimal JPDA algorithms   总被引:3,自引:0,他引:3  
The crucial problem in multiple target tracking is the hit-to-track data association. A hit is a received signal from a target or background clutter which provides positional information If an incorrect hit is associated with a track, that track could diverge and prematurely terminate or cause other tracks to also diverge. Most methods for hit-to-track data association fall into two categories: multiple hypothesis tracking (MHT) and joint probabilistic data association (JPDA). Versions of MHT use all or some reasonable hits to update a track and delay the decision on which hit was correct. JPDA uses a weighted sum of the reasonable hits to update a track. These weights are the probability that the hit originated from the target in track. The computational load for the joint probabilities increases exponentially as the number of targets increases and therefore, is not an attractive algorithm when expecting to track many targets. Reviewed here is the JPDA filter and two simple approximations of the joint probabilities which increase linearly in computational load as the number of targets increase. Then a new class of near optimal JPDA algorithms is introduced which run in polynomial time. The power of the polynomial is an input to the algorithm. This algorithm bridges the gap in computational load and accuracy between the very fast simple approximations and the efficient optimal algorithms  相似文献   

5.
A multipath data association tracker for over-the-horizon radar   总被引:3,自引:0,他引:3  
A new algorithm, multipath probabilistic data association (MPDA), for initiation and tracking in over-the-horizon radar (OTHR) is described. MPDA is capable of exploiting multipath target signatures arising from discrete propagation modes that are resolvable by the radar. Nonlinear measurement models exhibiting multipath target signatures in azimuth, slant range, and Doppler are used. Tracking is performed in ground coordinates and therefore depends on the provision of estimates of virtual ionospheric heights to achieve coordinate registration. Although the propagation mode characteristics are assumed to be known, their correspondence with the detections is not required to be known. A target existence model is included for automatic track maintenance. Numerical simulations for four resolvable propagation modes are presented that demonstrate the ability of the technique to initiate and maintain track at probabilities of detection of 0.4 per mode in clutter densities for which conventional probabilistic data association (PDA) has a high probability of track loss, and suffers from track bias. A nearest neighbor version of MPDA is also presented  相似文献   

6.
EM-ML algorithm for track initialization using possibly noninformative data   总被引:1,自引:0,他引:1  
Initializing and maintaining a track for a low observable (LO) (low SNR, low target detection probability and high false alarm rate) target can be very challenging because of the low information content of measurements. In addition, in some scenarios, target-originated measurements might not be present in many consecutive scans because of mispointing, target maneuvers, or erroneous preprocessing. That is, one might have a set of noninformative scans that could result in poor track initialization and maintenance. In this paper an algorithm based on the expectation-maximization (EM) algorithm combined with maximum likelihood (ML) estimation is presented for tracking slowly maneuvering targets in heavy clutter and possibly noninformative scans. The adaptive sliding-window EM-ML approach, which operates in batch mode, tries to reject or weight down noninformative scans using the Q-function in the M-step of the EM algorithm. It is shown that target features in the form of, for example, amplitude information (AI), can also be used to improve the estimates. In addition, performance bounds based on the supplemented EM (SEM) technique are also presented. The effectiveness of new algorithm is first demonstrated on a 78-frame long wave infrared (LWIR) data sequence consisting of an Fl Mirage fighter jet in heavy clutter. Previously, this scenario has been used as a benchmark for evaluating the performance of other track initialization algorithms. The new EM-ML estimator confirms the track by frame 20 while the ML-PDA (maximum likelihood estimator combined with probabilistic data association) algorithm, the IMM-MHT (interacting multiple model estimator combined with multiple hypothesis tracking) and the EVIM-PDA estimator previously required 28, 38, and 39 frames, respectively. The benefits of the new algorithm in terms of accuracy, early detection, and computational load are illustrated using simulated scenarios as well.  相似文献   

7.
Track monitoring when tracking with multiple 2D passive sensors   总被引:4,自引:0,他引:4  
A fast method of track monitoring is presented which determines what tracks are good and what tracks have had data association problems and should be eliminated. The philosophy of tracking in a dense target environment with limited central processing unit (CPU) time is to acquire the targets, track them with as simple a filter as will meet requirements, and monitor the tracks to determine if they are still tracking a target or are tracking incorrect returns and should be terminated. After termination the true targets are reacquired. However, it is difficult to determine from simple track monitoring the correct interpretation of a poor track. Poor tracks can be a result of a sensor failure, target maneuver, or incorrect data association. The author describes track monitoring and provides a solution to this dilemma when tracking with multiple two-dimensional passive sensors. The method is much faster than other monitoring methods.<>  相似文献   

8.
A non-Bayesian segmenting tracker for highly maneuvering targets   总被引:1,自引:0,他引:1  
The segmenting track identifier (STI) is introduced as a new methodology for tracking highly maneuvering targets. This nonBayesian approach dynamically partitions a target track into a sequence of track segments, making hard estimates of when the target's maneuvering mode transitions occur, and then estimates the parameters of the target model for each segment. STI is compared with two variable structures interacting multiple model (VS-IMM) algorithms through simulations, where it is shown to have a three fold performance advantage in median absolute turn rate estimation errors, as well as better position estimation for very highly maneuvering targets. STI is also shown to outperform a Rauch-Tung-Striebel (RTS) fixed-interval smoother when estimates are retrospectively derived, and STI accurately characterize the temporal pattern of maneuvers.  相似文献   

9.
We consider the problem of tracking a maneuvering target in clutter. In such an environment, missed detections and false alarms make it impossible to decide, with certainty, the origin of received echoes. Processing radar returns in cluttered environments consists of three functions: 1) target detection and plot formation, 2) plot-to-track association, and 3) track updating. Two inadequacies of the present approaches are 1) Optimization of detection characteristics have not been considered and 2) features that can be used in the plot-to-track correlation process are restricted to a specific class. This paper presents a new approach to overcome these limitations. This approach facilitates tracking of a maneuvering target in clutter and improves tracking performance for weak targets.  相似文献   

10.
PMHT: problems and some solutions   总被引:1,自引:0,他引:1  
The probabilistic multihypothesis tracker (PMHT) is a target tracking algorithm of considerable theoretical elegance. In practice, its performance turns out to be at best similar to that of the probabilistic data association filter (PDAF); and since the implementation of the PDAF is less intense numerically the PMHT has been having a hard time finding acceptance. The PMHT's problems of nonadaptivity, narcissism, and over-hospitality to clutter are elicited in this work. The PMHT's main selling-point is its flexible and easily modifiable model, which we use to develop the "homothetic" PMHT; maneuver-based PMHTs, including those with separate and joint homothetic measurement models; a modified PMHT whose measurement/target association model is more similar to that of the PDAF; and PMHTs with eccentric and/or estimated measurement models. Ideally, "bottom line" would be a version of the PMHT with clear advantages over existing trackers. If the goal is of an accurate (in terms of mean square error (MSE)) track, then there are a number of versions for which this is available.  相似文献   

11.
In this paper we present an estimation algorithm for tracking the motion of a low-observable target in a gravitational field, for example, an incoming ballistic missile (BM), using angle-only measurements. The measurements, which are obtained from a single stationary sensor, are available only for a short time. Also, the low target detection probability and high false alarm density present a difficult low-observable environment. The algorithm uses the probabilistic data association (PDA) algorithm in conjunction with maximum likelihood (ML) estimation to handle the false alarms and the less-than-unity target detection probability. The Cramer-Rao lower bound (CRLB) in clutter, which quantifies the best achievable estimator accuracy for this problem in the presence of false alarms and nonunity detection probability, is also presented. The proposed estimator is shown to be efficient, that is, it meets the CRLB, even for low-observable fluctuating targets with 6 dB average signal-to-noise ratio (SNR). For a BM in free flight with 0.6 single-scan detection probability, one can achieve a track detection probability of 0.99 with a negligible probability of false track acceptance  相似文献   

12.
This paper concerns the problem of array shape estimation and tracking for towed active sonar arrays, using received reverberation returns from a single transmitted CW pulse. Uniform linear arrays (ULAs) deviate from their nominal geometry while being towed due to ship maneuvers as well as ocean currents. In such scenarios, conventional beamforming performed under the assumption of a ULA can sometimes lead to unacceptably high spatial sidelobes. The reverberation leaking through the sidelobes can potentially mask weak targets in Doppler, especially when the target Doppler is close to that of the mainlobe reverberation and the reverberation-to-target ratio (RTR) is very high. Although heading sensors located along the array can be used to provide shape estimates, they may not be sufficiently available or accurate to provide the required sidelobe levels. We propose an array shape calibration algorithm using multipath reverberation returns from each ping as a distributed source of opportunity. More specifically, a maximum likelihood (ML) array shape calibration algorithm is developed, which exploits a deterministic relationship between the reverberation spatial and Doppler frequencies causing it to be low rank in the space-time vector space formed across a single coherent processing interval (CPI). In this application, a sequence of overlapped CPI length snapshots of duration less than the CW pulse is used. The ML estimates obtained for each snapshot are tracked using a Kalman filter with a state equation corresponding to the water pulley model for array dynamics. Simulations performed using real heading sensor data in conjunction with simulated reverberation suggest that 8-10 dB improvement in sidelobe level may be possible using the proposed array shape tracking algorithm versus an algorithm that uses only the available heading information.  相似文献   

13.
IMMPDAF for radar management and tracking benchmark with ECM   总被引:2,自引:0,他引:2  
A framework is presented for controlling a phased array radar for tracking highly maneuvering targets in the presence of false alarms (FAs) and electronic countermeasures (ECMs). Algorithms are presented for track formation and maintenance; adaptive selection of target revisit interval, waveform and detection threshold; and neutralizing techniques for ECM, namely, against a standoff jammer (SOJ) and range gate pull off (RGPO). The interacting multiple model (IMM) estimator in combination with the probabilistic data association (PDA) technique is used for tracking. A constant false alarm rate (CFAR) approach is used to adaptively select the detection threshold and radar waveform, countering the effect of jammer-induced false measurements. The revisit interval is selected adaptively, based on the predicted angular innovation standard deviations. This tracker/radar-resource-allocator provides a complete solution to the benchmark problem for target tracking and radar control. Simulation results show an average sampling interval of about 2.5 s while maintaining a track loss less than the maximum allowed 4%  相似文献   

14.
The problem of tracking multiple targets in the presence of clutter is addressed. The joint probabilistic data association (JPDA) algorithm has been previously reported to be suitable for this problem in that it makes few assumptions and can handle many targets as long as the clutter density is not very high. However, the complexity of this algorithm increases rapidly with the number of targets and returns. An approximation of the JPDA that uses an analog computational network to solve the data association problem is suggested. The problem is viewed as that of optimizing a suitably chosen energy function. Simple neural-network structures for the approximate minimization of such functions have been proposed by other researchers. The analog network used offers a significant degree of parallelism and thus can compute the association probabilities more rapidly. Computer simulations indicate the ability of the algorithm to track many targets simultaneously in the presence of moderately dense clutter  相似文献   

15.
An adaptive tracking filter for maneuvering targets is proposed using modified input estimation technique. Pseudoresiduals are defined using measurements and the velocity estimate at the hypothesized maneuver onset time. With the pseudoresiduals and a new target model representing transitions of nominal accelerations, a new input estimation method for tracking a maneuvering target is derived. Since the proposed detection technique is more sensitive to maneuvers than previous work, the shorter window length can be employed to detect and compensate target maneuvers. Also shown is that the tracking performance of the proposed filter is similar to that of interacting multiple model method (IMM) with 3 models, while computational loads of our method are drastically reduced  相似文献   

16.
SMALLTARGETTRACKINGTECHNIQUEWITHDATAFUSIONOFDISTRIBUTEDSENSORNETCHENGHongwei(程洪玮),ZHOUYiyu(周一宇),SUNZhongkang(孙仲康)(Faculty406,...  相似文献   

17.
Two approaches to a nonlinear state estimation problem are presented. The particular problem addressed is that of tracking a maneuvering target in three-dimensional space using spherical observations (radar data). Both approaches rely on semi-Markov modeling of target maneuvers and result in effective algorithms that prevent the loss of track that often occurs when a target makes a sudden, radical change in its trajectory. Both techniques are compared using real and simulated radar measurements with emphasis on performance and computational burden.  相似文献   

18.
Tracking in Clutter using IMM-IPDA?Based Algorithms   总被引:6,自引:0,他引:6  
We describe three single-scan probabilistic data association (PDA) based algorithms for tracking manoeuvering targets in clutter. These algorithms are derived by integrating the interacting multiple model (IMM) estimation algorithm with the PDA approximation. Each IMM model a posteriori state estimate probability density function (pdf) is approximated by a single Gaussian pdf. Each algorithm recursively updates the probability of target existence, in the manner of integrated PDA (IPDA). The probability of target existence is a track quality measure, which can be used for false track discrimination. The first algorithm presented, IMM-IPDA, is a single target tracking algorithm. Two multitarget tracking algorithms are also presented. The IMM-JIPDA algorithm calculates a posteriori probabilities of all measurement to track allocations, in the manner of the joint IPDA (JIPDA). The number of measurement to track allocations grows exponentially with the number of shared measurements and the number of tracks which share the measurements. Therefore, IMM-JIPDA can only be used in situations with a small number of crossing targets and low clutter measurement density. The linear multitarget IMM-IPDA (IMM-LMIPDA) is also a multitarget tracking algorithm, which achieves the multitarget capabilities by integrating linear multitarget (LM) method with IMM-IPDA. When updating one track using the LM method, the other tracks modulate the clutter measurement density and are subsequently ignored. In this fashion, LM achieves multitarget capabilities using the number of operations which are linear in the: number of measurements and the number of tracks, and can be used in complex scenarios, with dense clutter and a large number of targets.  相似文献   

19.
Directed Subspace Search ML-PDA with Application to Active Sonar Tracking   总被引:1,自引:0,他引:1  
The maximum likelihood probabilistic data association (ML-PDA) tracking algorithm is effective in tracking Very Low Observable targets (i.e., very low signal-to-noise ratio (SNR) targets in a high false alarm environment). However, the computational complexity associated with obtaining the track estimate in many cases has precluded its use in real-time scenarios. Previous ML-PDA implementations used a multi-pass grid (MPG) search to find the track estimate. Two alternate methods for finding the track estimate are presented-a genetic search and a newly developed directed subspace (DSS) search algorithm. Each algorithm is tested using active sonar scenarios in which an autonomous underwater vehicle searches for and tracks a target. Within each scenario, the problem parameters are varied to illustrate the relative performance of each search technique. Both the DSS search and the genetic algorithm are shown to be an order of magnitude more computationally efficient than the MPG search, making possible real-time implementation. In addition, the DSS search is shown to be the most effective technique at tracking a target at the lowest SNR levels-reliable tracking down to 5 dB (postprocessing SNR in a resolution cell) using a 5-frame sliding window is demonstrated, this being 6 dB better than the MPG search.  相似文献   

20.
Suboptimal joint probabilistic data association   总被引:5,自引:0,他引:5  
A significant problem in multiple target tracking is the hit-to-track data association. A hit is a received signal from a target or background clutter which provides positional information. If an incorrect hit is associated with a track, that track could diverge and terminate. Prior methods for this data association problem include various optimal and suboptimal two-dimensional assignment algorithms which make hit-to-track associations. Another method is to assign a weight for the reasonable hits and use a weighted centroid of those hits to update the track. The method of weighting the hits is known as joint probabilistic data association (JPDA). The authors review the JPDA approach and a simple ad hoc approximation and then introduce a new suboptimal JPDA algorithm. Examples which compare an optimal two-dimensional assignment algorithm with the ad hoc and the new suboptimal JPDA formulation are given  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号