首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 859 毫秒
1.
本文利用1988年9月至1989年5月在武昌(114.4°E,30.6°N)同时接收日本ETS-Ⅱ卫星(130.0°E)发出的VHF(136MHz)信标信号和苏联静止站-T卫星(99.0°E)发出的UHP(714MHz)广播电视信号时获得的观测记录,对夜间出现的双频(VHF/UHF)闪烁和VHF快速(每分钟大于5次的起伏)法拉弟旋转起伏(以下用FRF表示法拉弟旋转起伏)进行了统计分析,结果发现在临近太阳黑子最大年份观测到的双频夜间闪烁主要为急始型,呈赤道特性,且在临近二分点的月份里有最大出现率,秋季更为明显;伴随VHF振幅闪烁出现的快速FRF常与UHF振幅闪烁共存,以及产生这种现象的不规则体由西向东漂移,东-西向的漂移速度分量,在子夜前为140m/s,在子夜后为90m/s。   相似文献   

2.
曹冲 《空间科学学报》1987,7(4):285-289
本文利用位于不变纬度∧=46°—70°S之间的四个电离层站的观测数据,分析了电离层主糟的基本特性.分析结果表明,电离层主槽有如下特征:(1)槽在冬季夜间出现较为明显,春秋季夜间较弱,夏季夜间和所有季节的白天均观测不到;(2)槽的特点有二,一是其电子密度异常地低,二是层的虚高有较大的增加;(3)槽的极向壁较稳定,且有较陡峭的电子密度梯度,而槽的赤道向壁较多变,电子密度梯度较平缓;(4)槽出现的主要时段是在20:00—03:00(LT),在此期间,槽处于不断的变化和运动之中.   相似文献   

3.
华南地区电离层闪烁的时空分布特征研究   总被引:1,自引:1,他引:0  
利用位于赤道异常区的广州(23.17°N, 113.34°E)和茂名(21.45°N, 111.31°E)两台站2011年7月至2012年6月观测到的GPS电离层闪烁数据, 分析比较了这两地电离层闪烁出现的逐月变化及地方时变化和空间分布特征. 结果表明, 中等强度闪烁(S4 > 0.4)和强闪烁(S4 > 0.6)的出现均呈现明显季节分布规律, 两站的闪烁活动均表现出春秋强, 冬夏弱的特点, 在时间上主要发生在20:00LT-24:00LT; 从空间分布来看, 两站的闪烁活动在2011年秋季, 闪烁出现的区域比较分散, 而在2012年春季, 主要在两站上空区域出现的闪烁最为频繁.   相似文献   

4.
本文用新乡(电离层400km对下点是:32.4°N,115.6°E)、重庆(电离层400km对下点是:27.2°N,108.7°E)接收日本同步卫星ETS-Ⅱ的信标资料,研究了我国中纬地区上空半个太阳活动周期内(1981—1985)电离层等效板厚的变化特征,得到了等效板厚日变化、季变化的二维和三维等值图。由付里叶分析和回归方法得出等效板厚日变化各谐波分量与太阳黑子数12个月滑动平均值之间存在弱的线性关系。同时指出在等效板厚日变化中,于当地时0400—0700LT存在一明显的黎明峰。并对出现这种峰的原因作了讨论。   相似文献   

5.
利用2010年11月至2011年10月IGS提供的全球电子浓度总含量(TEC)数据, 分析太阳活动上升期华南地区(经度110°E, 纬度5°—35°N) 上空电离层赤道异常(EIA)北驼峰的变化特征. 结果显示, 电离层赤道异常北驼峰区TEC峰值I具有明显的季节和半年变化特征; 北驼峰峰值出现的时间T和纬度L的日变化有一个相对较大的变化区间, 其季节和半年变化特征并不明显; 太阳活动对北驼峰变化影响比较明显, 而地磁活动对北驼峰变化影响不明显.   相似文献   

6.
利用一种时变电离层剖面的数值模型,研究电离层最大电子浓度所在高度对热层子午风变化的响应。对武昌(30.5°N,114.4°E)和Wakkanai(45.4°N,141.7°E)讨论三种不同类型的风场对峰高的控制作用。结果表明:(1)峰高对中性风的响应过程,存在南北方向不对称性、日夜不对称性和纬度差异。在真实背景大气下,热层与电离层通过风场强烈耦合。(2)由伺服理论推算的风场基本上是合理可靠的。(3)水平风模式HWM-90在所关心的地区,大致能反映实际子午风状况,但合理程度不及伺服理论的风场。   相似文献   

7.
海口站电离层闪烁强度功率谱分析与建模应用   总被引:1,自引:1,他引:0       下载免费PDF全文
基于中国海口站(20.00°N, 110.33°E)获取的2013全年UHF 频段电离层闪烁信号强度数据, 利用Welch算法, 分析给出了四类典型电离层闪 烁强度功率谱. 利用功率谱时序图分析方法, 发现电离层不均匀体存在东西向水 平周期性变化结构. 提取全年功率谱指数p, 通过统计分析发现谱指数p存在规律变化, 据此建立一个谱指数经验模型, 该谱指数模型已用于中国低纬 区域电离层闪烁发生预报概率模型(CMSOP), 进而对海口站UHF频段电离层闪烁发生 概率观测数据和预报结果进行了对比分析.   相似文献   

8.
通过对2018年武汉站(114.61°E,30.53°N)数字测高仪记录的数据统计分析,研究武汉地区突发E层的特征。研究发现:2018年武汉地区电离层突发E层的临界频率在夏季最高,在冬季有一个次增强现象,在春秋季较低;在正午前最大,在日落后出现小幅度提升,在日出前最低。利用指定动态全球大气气候扩展模型SD-WACCM-X模拟出2018年武汉上空90~140 km高度的平均风场,探讨突发E层与背景风之间的关系,揭示突发E层的形成机制。结果表明,半日潮汐分量可能诱导突发E层临界频率的半日变化,周日潮汐分量诱导突发E层临界频率的周日变化;突发E层的强度可能与纬向风场120 km高度处的风剪切有关。   相似文献   

9.
负相电离层骚扰及其日地相关关系   总被引:1,自引:0,他引:1  
本文对1965—1982年, 我国境内的满州里(49°35′N, 117°27′E), 北京(40°00′N, 116°18′E), 重庆(29°30′N, 106°25′E), 广州(23°09′N, 113°21′E)和海口(20°00′N, 110°20′E)等五个电离层观测站的负相电离层骚扰形态, 用世界资料中心A出版的太阳地球物理资料中的太阳耀斑、射电、地磁和北京地磁台的地磁观测报告等资料与电离层骚扰的相关关系进行了分析研究.所得到的电离层骚扰形态变化规律和日地相关规律的结果对预报电离层骚扰是有益的.   相似文献   

10.
本文分析了武昌站1964至1973年出现于白天的序列型Es层(即Ess层)的频高图,发现Ess层和出现于夜间的运动型E区厚层(即Em层)在层的发展变化特征、出现规律以及与地磁及太阳活动的关系等方面都非常相似,并探讨了它们的形成机制,指出它们是电离层动力学过程引起的同一物理现象.  相似文献   

11.
中国广州地区电离层闪烁观测结果的初步统计分析   总被引:2,自引:2,他引:0       下载免费PDF全文
利用在广州站(23o8' N, 113o17' E)建立的GPS电离层闪烁监测系统, 开展了对电离层闪烁的连续观测. 利用这些观测数据, 对广州地区2007年4月至9月及2008年1月至9月电离层闪烁变化特性进行了初步统计分析研究. 分析结果表明, 广州地区闪烁主要发生在太阳活动较低的磁静日期间. 季节变化表现为弱闪烁(0.2相似文献   

12.
The occurrence of ionospheric scintillations with S4 ? 0.2 was studied using GPS measurements at Guilin, China (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of the equatorial anomaly. The results are presented for data collected from January 2009 to March 2010. The results show that nighttime amplitude scintillations only took place in February and March of the considered years, while daytime amplitude scintillations occurred in August and December of 2009. Nighttime amplitude scintillations, observed in the south of Guilin, always occurred with phase scintillations, TEC (Total Electron Content) depletions, and ROT (Rate Of change of TEC) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations always took place simultaneously for most of the GPS satellites which appeared over Guilin in different azimuth directions. Ground-based GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio (SNR) measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively. Moreover, strong daytime amplitude scintillations may be associated with the plasma density enhancements in ionospheric E region caused by the Perseid and Geminid meteor shower activities.  相似文献   

13.
The characteristics of nighttime ionospheric scintillations measured at the L-band frequency of 1.575 GHz over Dibrugarh (27.5°N, 95°E, MLAT  17°N, 43° dip) during the ascending half of the solar cycle 24 from 2010 to 2014 have been investigated and the results are presented in this paper. The measurement location is within or outside the zone of influence of the equatorial ionization anomaly depending on solar and geomagnetic activity. Maximum scintillation is observed in the equinoxes irrespective of solar activity with clear asymmetry between March and September. The occurrence frequency in the solstices shifts from minimum in the June solstice in low solar activity to a minimum in the December solstice in high solar activity years. A significant positive correlation of occurrence of scintillations in the June solstice with solar activity has been observed. However, earlier reports from the Indian zone (~75°E) indicate negative or no correlation of scintillation in June solstice with solar activity. Scintillations activity/occurrence in solstices indicates a clear positive correlation with Es recorded simultaneously by a collocated Ionosonde. In equinoxes, maximum scintillations occur in the pre-midnight hours while in solstices the occurrence frequency peaks just after sunset. The incidence of strong scintillations (S4  0.4) increases with increase in solar activity. Strong (S4  0.4) ionospheric scintillations accompanied by TEC depletions in the pre-midnight period is attributed to equatorial irregularities whereas the dusk period scintillations are related to the sporadic-E activity. Present results thus indicate that the current location at the northern edge of the EIA behaves as low as well as mid-latitude location.  相似文献   

14.
Using the GPS ionospheric scintillation data at Hainan station (19.5°N, 109.1°E) in the eastern Asia equatorial regions and relevant ionospheric and geomagnetic data from July 2003 to June 2005, we investigate the response of L-band ionospheric scintillation activity over this region to different strong magnetic storm conditions (Dst < −100 nT) during the descending phase of the solar cycle. These strong storms and corresponding scintillations mainly took place in winter and summer seasons. When the main phase developed rapidly and reached the maximum near 20–21 LT (LT = UT + 8) after sunset, scintillations might occur in the following recovery phase. When the main phase maximum occurred shortly after midnight near 01–02 LT, following the strong scintillations in the pre-midnight main phase, scintillations might also occur in the post-midnight recovery phase. When the main phase maximum took place after 03 LT to the early morning hours no any scintillation could be observed in the latter of the night. Moreover, when the main phase maximum occurred during the daytime hours, scintillations could also hardly be observed in the following nighttime recovery phase, which might last until the end of recovery phase. Occasionally, scintillations also took place in the initial phase of the storm. During those scintillations associated with the nighttime magnetic storms, the height of F layer base (h’F) was evidently increased. However, the increase of F layer base height does not always cause the occurrence of scintillations, which indicates the complex interaction of various disturbance processes in ionosphere and thermosphere systems during the storms.  相似文献   

15.
基于肇庆地磁台的地磁监测数据和广州气象卫星地面站建立的华南地区GPS电离层闪烁监测网的监测数据, 统计分析了2008年7月至2010年7月太阳活动低年期间广州地区地磁扰动与电离层闪烁的关系. 用肇庆台地磁水平分量H的变化量换算出肇庆地磁指数K, 以此来代表广州地区地磁扰动情况.分析结果表明, 磁暴/强地磁扰动对广州地区电离层闪烁的发生总体表现为抑制作用, 电离层闪烁主要发生在低K值期间, 而在K ≥ 4时电离层闪烁的发生呈下降趋势. 电离层闪烁发生率随季节和地磁活动的变化规律表现在, 春季的弱闪烁发生率、夜间中等以上闪烁发生率和夏季中等以上闪烁的发生率明显与地磁活动指数K相关, 即随$K$指数的增大而减小; 在秋季和冬季闪烁发生率与K指数变化无明显关系. 同时还综合分析了地磁与太阳活动的变化对电离层活动的影响, 广州地区闪烁主要发生在太阳活动较低的磁静日期间.   相似文献   

16.
In this research, it is presented the daytime amplitude scintillations recorded at VHF frequency (244 MHz) at an Indian low-latitude station, Waltair (17.7°N, 83.3°E) during seven continuous years (1997–2003). Contrary to the nighttime scintillation seasonal trends, the occurrence of daytime scintillations maximizes during summer followed by winter and the equinox seasons. The fade depths, scintillation indices and the patch durations of daytime scintillations are meager when compared with their nighttime counterparts. A co-located digital high frequency (HF) ionosonde radar confirms the presence of sporadic (Es) layers when daytime scintillations are observed. The presence of daytime scintillations is evident when the critical frequency of the Es-layer (foEs) is ≥4 MHz and Es-layers are characterized by a highly diffuse range spread Es echoes as can be seen on ionograms. It is surmised that the gradient drift instability (GDI) seems to be the possible mechanism for the generation of these daytime scintillations. It is quite likely that the spread Es-F-layer coupling is done through polarization electric fields (Ep) that develop inside the destabilized patches of sporadic E layers, which are mapped up to the F region along the field lines as to initiate the daytime scintillations through the GDI mechanism. Further, the presence of additional stratification of ionosphere F-layer, popularly known as the F3-layer, is observed on ionograms once the Es-layers and daytime scintillations are ceased.  相似文献   

17.
基于加拿大地区高纬度电离层观测网的电离层闪烁观测数据,分析了2018年8月26日地磁暴事件引发的北半球高纬度地区电离层总电子含量(TEC)异常变化、TEC变化率指数(ROTI)及电离层相位闪烁的变化特征.结果表明:加拿大地区最大异常值约6 TECU,磁暴引发全球电离层TEC异常峰值高达20 TECU;加拿大地区电离层相位闪烁发生率最大增至12.6%,而磁静日期间约为1%;强电离层闪烁期间,电离层相位闪烁指数与ROTI之间具有较强的一致性.对GPS双频精密单点定位(Precise Point Positioning,PPP)结果进行分析发现:无闪烁期间定位误差随测站纬度的增高呈现出增大趋势,但均方根误差小于0.4m;闪烁发生期间各测站的定位误差均显著增大,水平和垂直方向定位误差分别增至约0.9m及1.7m.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号