首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 720 毫秒
1.
This article presents the data about heat transfer coefficient ratios, film cooling effectiveness and heat loads for the injection through cylindrical holes, 3-in-1 holes and fanned holes in order to characterize the film cooling performance downstream of a row of holes with 45° inclination and 3 hole spacing apart. The trip wire is placed upstream at a distance of 10 times diameter of the cooling hole from the hole center to keep mainstream fully turbulent. Both inlet and outlet of 3-in-1 holes have a 15° lateral expansion. The outlet of fanned holes has a lateral expansion. CO2 is applied for secondary injection to obtain a density ratio of 1.5. Momentum flux ratio varies from 1 to 4. The results indicate that the increased momentum flux ratio significantly increases heat transfer coefficient and slightly improve film cooling effectiveness for the injection through cylindrical holes. A weak dependence of heat transfer coefficient and film cooling effectiveness, respectively, on momentum flux ratio has been identified for the injection through 3-in-1 holes. The in- crease of the momentum flux ratio decreases heat transfer coefficient and significantly increases film cooling effectiveness for the injection through fanned holes. In terms of the film cooling performance, the fanned holes are the best while the cylindrical holes are the worst among the three hole shapes under study.  相似文献   

2.
A series of numerical analyses have been performed to investigate the flow structures in a narrow confined channel with 12 staggered circular impingement holes and one bigger exit hole. The flow enters the channel through the impingement holes and exits through the far end outlet. The flow fields corresponding to two jet Reynolds numbers(25000 and 65000) and three channel configurations with different ratios of the channel height to the impingement hole diameter(Zr= 1,3, 5) are analyzed by solving the Reynolds averaged Navier–Stokes equations with the realizable k–e turbulence model. Detailed flow field information including the secondary flow, the interaction between the jets and the cross flow, and flow distribution along the channel has been obtained.Comparisons between the numerical and experimental results of the flow fields at the four planes along the channel are performed to validate the numerical method. The calculated impingement pattern, high velocity flow distribution, low velocity separation region and vortices are in good agreement with the experimental data, implying the validity and effectiveness of the employed numerical approach for analyzing relevant flow field.  相似文献   

3.
Three-dimensional numerical simulation is carried out to investigate the flow and heat transfer characteristics of impingement/effusion cooling systems. The impingement/effusion holes are arranged on two parallel perforated plates respectively in a staggered manner. Every effusion hole has an inclined angle of 30° with respect to the surface. The two parallel plates are spaced three times the diameter of the effusion hole. The ratio of center-to-center spacing of adjacent holes to the diameter of the effusi...  相似文献   

4.
An enlarged model of trapezoidal duct near the leading-edge in the blade is built up. The effects of impingement jets, swirl flow, cross flow and effusion flow are considered. Experiments are performed to measure flow fields in this confined passage and exit holes on one of its side walls. Cross flow and effusion flow are induced in the channel by the outflow of side exit hole (SEH) and film cooling hole (FCH), which are oriented on one end wall and bottom wall of the passage. Detailed flow structures are measured for two impingement angles of 35° and 45° with 6 combinations of outflow ratios. Results show that the small jets impinge the target wall effectively while the large jets contribute to inducing and impelling a strong counter-clockwise vortex in the upper part of the passage. Cross flow plays a dominate role for the flow structures in the passage and exit holes. It deflects jets, enhances swirl and deteriorates side exit conditions. Impingement angle is another significant factor for the flow characteristics. Its effect reveals more evidently with cross flow. Within the present test conditions, the mass flow rates and outflow positions of FCHs have no distinct effect on the main flow structures.  相似文献   

5.
The film cooling effectiveness of two turbine blades at different turbulence intensities(0.62% and 16.00%) and mass flux ratios(2.91%, 5.82%, 8.73% and 11.63%) is studied by using the Pressure-Sensitive Paint(PSP) measurement technique. There are a baseline and an improved turbine blade in current work, and their film cooling hole position distribution is the same. But the hole shape on suction surface and pressure surface is changed from cylindrical hole(baseline)to laid-back fan-shaped hole(im...  相似文献   

6.
YANG Bin 《航空动力学报》2010,25(7):1443-1453
The flow and heat transfer characteristics were numerically investigated on a film cooling model under different rotating operating conditions.The computational model was originated from the mid-span section of a typical turbine rotor with two rows of 14 staggered injection holes angled 30° both on the suction surface and pressure surface,and the flow through the coolant plenum and all the hole-pipes were resolved as a part of the computational domain by specifying the coolant mass flux in the plenum.The computations primarily focus on under-standing the rotational effect on film cooling performance in mechanism research approach.In the present study,the Reynolds number(Re) based on mainstream velocity and injection hole diameter varied from 1835.5 to 5507.4,and the averaged blowing ratio(M) ranges of 0.5 to 1.5.Results show that the coolant will move on to the high-radius locations near the suction and pressure surfaces due to the strong centrifugal effect,which leads to the decrease in adiabatic effectiveness accordingly.The discharge coefficients(Cd),on the pressure surface,are much higher than that on the suction surface under a given operating condition.In addition,the critical values of angular speed which represent the equilibrium of centrifugal force and Coriolis force near the pressure surface are also presented.   相似文献   

7.
An experimental investigation into pre-swirl effectiveness and receiver hole discharge coefficient characteristics for a high radius injection pre-swirl cooling systems was carried out on a physically representative experimental rig with a 450 mm diameter rotor.The receiver holes and pre-swirl nozzle were located at a radius of 181 mm and 180 mm respectively.The experimental work was mainly conducted at 5 000~12 000 r/min,4 bar absolute pressure and 1.132 kg/s air supply.The maximum air supply temperature was 190 ℃.Pressure and temperature distributions in the pre-swirl system were examined with an emphasis on the velocity effectiveness of the pre-swirl system as a whole and on the discharge coefficients of the rotating 'receiver holes' in the rotor.The results showed that the velocity effectiveness increased with increasing swirl ratio resulting in reduced blade cooling flow temperature.Different seal flow configurations caused very different effectiveness at different speeds,but outflow through the inner and outer seals always gave the highest effectiveness compared other configurations.Increasing the seal flow rate reduced the effectiveness.For the coefficient of discharge,except for the low speed range,it increased with increase in swirl ratio for most speeds.   相似文献   

8.
Numerical analysis and optimization of boundary layer suction on airfoils   总被引:2,自引:1,他引:1  
Numerical approach of hybrid laminar flow control(HLFC) is investigated for the suction hole with a width between 0.5 mm and 7 mm. The accuracy of Menter and Langtry’s transition model applied for simulating the flow with boundary layer suction is validated. The experiment data are compared with the computational results. The solutions show that this transition model can predict the transition position with suction control accurately. A well designed laminar airfoil is selected in the present research. For suction control with a single hole, the physical mechanism of suction control, including the impact of suction coefficient and the width and position of the suction hole on control results, is analyzed. The single hole simulation results indicate that it is favorable for transition delay and drag reduction to increase the suction coefficient and set the hole position closer to the trailing edge properly. The modified radial basis function(RBF) neural network and the modified differential evolution algorithm are used to optimize the design for suction control with three holes. The design variables are suction coefficient, hole width, hole position and hole spacing. The optimization target is to obtain the minimum drag coefficient. After optimization,the transition delay can be up to 17% and the aerodynamic drag coefficient can decrease by 12.1%.  相似文献   

9.
《中国航空学报》2016,(6):1506-1516
Numerical simulation of wing stall of a blended flying wing configuration at transonic speed was conducted using both delayed detached eddy simulation(DDES) and unsteady Reynolds-averaged Navier-Stokes(URANS) equations methods based on the shear stress transport(SST) turbulence model for a free-stream Mach number 0.9 and a Reynolds number 9.6 × 10~6. A joint time step/grid density study is performed based on power spectrum density(PSD) analysis of the frequency content of forces or moments, and medium mesh and the normalized time scale0.010 were suggested for this simulation. The simulation results show that the DDES methods perform more precisely than the URANS method and the aerodynamic coefficient results from DDES method compare very well with the experiment data. The angle of attack of nonlinear vortex lift and abrupt wing stall of DDES results compare well with the experimental data. The flow structure of the DDES computation shows that the wing stall is caused mainly by the leeward vortex breakdown which occurred at x/x_(cr)= 0.6 at angle of attack of 14°. The DDES methods show advantage in the simulation problem with separation flow. The computed result shows that a shock/vortex interaction is responsible for the wing stall caused by the vortex breakdown. The balance of the vortex strength and axial flow, and the shock strength, is examined to provide an explanation of the sensitivity of the breakdown location. Wing body thickness has a great influence on shock and shock/vortex interactions, which can make a significant difference to the vortex breakdown behavior and stall characteristic of the blended flying wing configuration.  相似文献   

10.
《中国航空学报》2016,(5):1196-1204
The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely ‘‘sharp" and ‘‘round", were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°–20° with the step of 5°. The Reynolds number of the model was about 2 ×10~5 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.  相似文献   

11.
双向扩张型孔射流角度对气膜冷却特性影响的实验   总被引:4,自引:1,他引:3  
设计了气膜冷却实验台,测量了单排7个气膜孔的平均换热系数和冷却效率.气膜孔倾角为20°,45°和90°,孔间距P/d=3.动量比变化范围为1~4.重点研究主流零压力梯度下动量比和孔倾角对换热系数比和冷却效率影响.结果表明,动量比的增加使换热系数比和冷却效率都增加,随着倾角增加,动量比对冷却效率的影响减弱;倾角对换热系数比的影响非常复杂,倾角的增加使冷却效率减小.倾角20°的冷却效率明显高于倾角45°和90°的冷却效率.   相似文献   

12.
角度和孔间距对双向扩张型孔流量系数影响的实验   总被引:3,自引:2,他引:1  
为了研究非常规扩张孔的流动特性,测量了一排7个双向扩张孔的平均流量系数.气膜孔的前倾角为20°,45°和90°,径向角为0°,30°和65°,孔间距与孔径比为2,3和4.动量比变化范围为1到8.结果表明,径向角为0°的流量系数随前倾角的增加显著增加.前倾角为20°的流量系数随径向角的增加略有减小.前倾角为90°的流量系数随孔间距的增加而增加.   相似文献   

13.
动量比对涡轮叶片气膜孔流量系数的影响   总被引:2,自引:0,他引:2  
采用放大的叶片模型,利用大尺寸低速线性叶栅风洞进行实验,测量了涡轮工作叶片表面不同位置处6排气膜孔的流量系数,研究了不同吹风比、密度比和雷诺数对流量系数的影响。结果表明:(1)用二次流与主流的动量比来描述气膜孔流量系数的变化规律较为恰当。该参数可以综合吹风比和密度比的影响;(2)气膜孔流量系数随动量比的增大而增加,在小动量比下,影响尤为明显;(3)叶片表面不同位置处气膜孔的流量系数有较大的差别。表明气膜孔出口处的流动状态对流量系数有较大的影响。  相似文献   

14.
主流逆压力梯度下气膜孔流量系数的实验   总被引:2,自引:1,他引:2       下载免费PDF全文
为研究主流逆压力梯度下气膜孔的几何结构和气动参数对流量系数的影响规律,采用放大模型在低速回流式风洞中进行了实验。在对比研究圆柱孔和双向扩张孔流量系数基础上,重点研究了双向扩张孔的流量系数。结果表明,双向扩张孔的流量系数比圆柱孔的流量系数高。前倾角越大,流量系数越高;径向角越大,流量系数越高。流量系数随动量比的增加而增高,在动量比小于4时增幅尤其明显。主流湍流度增大使流量系数增大,动量比越小,增幅越大。除了在孔轴线与平板的夹角较大情况外,密度比对流量系数的影响较小。  相似文献   

15.
气动参数对前缘气膜冷却效率影响的实验   总被引:2,自引:1,他引:1  
针对叶片前缘结构特点,建立了前缘气膜冷却实验台,实验模型由带气膜孔的半圆柱面和平板组成.密度比为1和1.5,动量比变化范围为0.5~4,湍流度为0.4%和8%.结果表明,随着动量比的增加,冷却效率减小.在低动量比下,湍流度的提高使径向平均冷却效率降低.随着动量比的增加,湍流度对径向平均冷却效率的影响减弱.低动量比下,密度比的增加使径向平均冷却效率减小;高动量比下,密度比的增加使径向平均冷却效率增大.   相似文献   

16.
双扇形孔气膜冷却效率的研究   总被引:1,自引:0,他引:1  
对平板表面的双扇形孔排气膜冷却特性进行了研究,包括孔节距、动量比和主流湍流度对气膜冷却效率的影响.气膜孔的直径为d,气膜孔与主流方向的夹角为45°.孔节距有2d,3d和4d,动量比有1,2和4,主流湍流度有0.4%和8%.结果表明,气膜冷却效率随孔节距增大而降低;孔节距为2d时,动量比增大会引起气膜冷却效率显著增加;孔节距为4d时,气膜冷却效率受动量比的影响相对较小;在孔节距及动量比均较大时,主流湍流度的增大会导致气膜冷却效率较为明显的下降.   相似文献   

17.
气膜孔布局对前缘气膜冷却效率影响的实验   总被引:9,自引:7,他引:2       下载免费PDF全文
针对叶片前缘结构的特点,建立了前缘气膜冷却实验台,实验模型由半圆柱面和两个平板组成,在距离滞止线2倍气膜孔直径距离位置布置了1排气膜孔。主流在前缘的湍流度为8%,二次流和主流密度比为1.5,动量比变化范围为0.5~4,分析了在不同动量比下气膜孔间距和径向角变化对径向平均气膜冷却效率的影响。径向角分别为0,°45,°65,°孔间距与孔径的比分别为2,3,4。研究结果表明,随着孔间距的增加,径向平均冷却效率逐渐降低。径向角对径向平均冷却效率的影响非常复杂。  相似文献   

18.
带单排气膜孔的叶片前缘气膜冷却换热实验   总被引:4,自引:2,他引:2       下载免费PDF全文
针对叶片前缘结构的特点,建立了前缘气膜冷却实验台,实验模型由半圆柱面和两个平板组成,在距离滞止线2倍孔间距位置布置了1排气膜孔。详细地测量了主流湍流度,二次流与主流密度比以及动量比对前缘径向平均换热系数和换热系数比的影响。二次流与主流密度比为1和1.5。动量比变化范围为0.5~4。主流在前缘位置的湍流度分别为0.4%和8%。结果表明,随着动量比的增加,径向平均换热系数增加。无二次流时,湍流度的增加使换热显著增强,有二次流时,湍流度增加使换热增强的幅度较小。密度比对径向平均换热系数的影响非常小。随着孔间距的增加,径向平均换热系数略有减小。径向角对径向平均换热系数的影响较小。在高湍流度下,前缘位置的径向平均换热系数比沿着流动方向是逐渐降低的。在低湍流度下,前缘位置的径向平均换热系数比在x/d=4.5的位置出现了一个峰值。  相似文献   

19.
试验测量了某涡轮工作叶片表面不同位置气膜孔在不同密度比、吹风比和雷诺数下的流量系数,分析了各种因素对流量系数的影响程度,重点研究了二次流-主流密度比对流量系数的影响.试验结果表明:(1)密度比对不同位置气膜孔流量系数的影响也有差别:在吸力面、前缘等位置密度比对气膜孔流量系数影响较大;在压力面密度比对气膜孔流量系数影响较小.(2)以往采用空气作为主流及二次流,在低温差下进行试验所获的流量系数在用于涡轮叶片气膜冷却的实际情况时,必须进行修正.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号