首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于分子动力学方法,研究了在328、298、233 K时设计的5种不同单体摩尔比的P(BAMO/AMMO)的力学性能、P(BAMO/AMMO)分别与不同质量比Bu-NENA或TMETN组成的粘合体系的力学性能以及P(BAMO/AMMO)对HMX安全性能的影响。298 K时,5种P(BAMO/AMMO)的密度为1.135~1.172 g/cm~3,且P(BAMO/AMMO)~5为最大(BAMO与AMMO摩尔比为3∶1);当BAMO与AMMO摩尔比为2∶1时,对应P(BAMO/AMMO)~4的力学性能在3种温度下均为最好;相对于TMETN,Bu-NENA与5种P(BAMO/AMMO相容性更好,但Bu-NENA对P(BAMO/AMMO聚合物的增塑效果均较差,而除P(BAMO/AMMO)~4外,TMETN在较多的特定质量分数下,均可改善P(BAMO/AMMO)聚合物力学性能,增塑效果较Bu-NENA好。5种P(BAMO/AMMO)粘结剂均能改善HMX安全性,其中当BAMO与AMMO摩尔比例为3∶1时,降感效果最好。  相似文献   

2.
为预测增塑比、温度、PEG相对分子质量对TMETN/PEG相容性的影响规律,采用分子动力学模拟和介观动力学模拟,计算了TMETN(三羟甲基乙烷三硝酸酯)和预聚物PEG(聚乙二醇)的溶度参数(δ)、有序度参数和体系密度分布等。结果表明,随着增塑比增大,体系更容易达到平衡状态、相容性更好,PEG、TMETN聚集情况均得到改善,并且PEG的改善程度更大,这与"加大增塑剂用量会减弱PEG的结晶性"规律一致。随温度升高,PEG、TMETN的极性均增大,同时极性差值增大、介观粒子的有序度参数增大,这均表明体系的相容性变差;并且发现温度对PEG的影响更大,温度越高,体系相容性变差的幅度越大。随着PEG相对分子质量的增大,PEG的极性不断减弱,导致体系的相容性变差,不过变差的幅度在减小;此外,通过"高相对分子质量PEG分子间径向分布函数与TMETN的差异更大"也可得出体系相容性变差的结论。  相似文献   

3.
采用分子动力学模拟(MD)计算与差示扫描量热法(DSC)相结合,研究六硝基六氮杂异伍兹烷(CL-20)与推进剂主要组分间的相互作用,用理论键长变化趋势分析实验结果。分子动力学模拟计算键长变化趋势结果表明,CL-20与黑索今(RDX)、奥克托今(HMX)混合体系的引发键N—NO2键最大键长Lmax随温度升高显著的单调递增,且当CL-20与RDX、HMX共混后,键长普遍增大,更容易断裂分解;而CL-20与硝化棉(NC)、硝化甘油(NG)共混后各个键长均与单质状态下存在时的键长相比变化不大,一些键长均小于其单质状态下存在时的键长,推测CL-20与NG、NC键混合后稳定性较好,不易发生键的断裂分解。DSC结果表明,CL-20与RDX和HMX之间在大于156℃的较高温度条件下存在强烈的相互作用,CL-20与NG、NC之间没有明显的化学作用。  相似文献   

4.
GAP热塑性弹性体共混增韧硝化棉研究   总被引:2,自引:0,他引:2  
采用溶液共混法,制得一组不同配比的聚叠氮缩水甘油醚聚氨酯弹性体(GAPE)/硝化棉(NC)共混聚合物。采用真密度仪、红外光谱、动态热机械分析仪(DMA)和万能材料拉伸试验机,对共混物性能进行表征。结果表明,GAPE/NC共混体系具有良好的相容性及低温性能。随GAPE质量分数的增加,共混体系的抗拉强度略有下降,断裂伸长率均有所提高。当GAPE质量分数为30%时,GAPE/NC共混体系的断裂伸长率达33.5%,比NC的断裂伸长率7.7%提高了近5倍。同时,DMA分析表明,此配比下共混体系的两相玻璃化温度较靠近,且活化能、低温脆化参数较低。  相似文献   

5.
PBT/增塑剂共混物相容性的介观动力学模拟   总被引:2,自引:0,他引:2  
《上海航天》2015,32(4)
用分子动力学(MD)和介观动力学(MesoDyn)法模拟研究了粘合剂3,3-二叠氮甲基氧丁环-四氢呋喃共聚醚(PBT)与A3[双(2,2-二硝基丙醇缩甲醛(A2)与双(2,2-二硝基丙醇)缩乙醛(A1)质量比1∶1混合物]、端叠氮基聚叠氮缩水甘油醚(GAPA)等不同增塑剂组成的共混体系的溶度参数和共混物分子间的Flory-Huggins作用参数,预测了共混物的相容性和介观形貌。结果表明:室温下PBT/A3共混体系,增塑比为1.4时体系的相容性最好;对增塑比为1.2的PBT/A3/GAPA共混物,PBT/A3/GAPA配比为10/2/10体系的相容性最好。  相似文献   

6.
热分析法研究ADN与推进剂组分的相互作用及相容性   总被引:1,自引:0,他引:1  
用高压差示扫描量热法( PDSC),研究了ADN(二硝酰胺铵)与推进剂的粘合剂、固化剂、增塑剂和高能填料的相互作用及相容性。结果表明,ADN与PEG、TDI和HDI二元混合物的分解温度比ADN的分解峰温低16.3~26.9℃,混合体系相互作用危险,相容性差;ADN与NG-BTTN、TEGDN、Bu-NENA和HMX二元混合物的分解温度略高于ADN的分解峰温0.5~7.5℃,对应混合物的分解温度比NG-BTTN、TEGDN、Bu-NENA和HMX的分解温度低5.9~14.4℃,混合体系的相互作用较为敏感;ADN与GAP、PBT、PET、IPDI、N-100、NG、TMETN、BDNPA-F和Al二元混合物的分解温度与各单组分分解温度差小于2℃,上述组分相容。  相似文献   

7.
芳纶纤维和丁腈橡胶体系绝热层新配方的研制   总被引:1,自引:0,他引:1  
采用含卤-锑的阻燃剂,芳纶纤维代替石棉纤维,研制了耐烧蚀的丁腈橡胶绝热层新配方(D210配方)。试验研究了芳纶纤维用量、卤-锑阻燃剂用量及纤维排布方向对绝热层烧蚀性能的影响;研究了增塑剂用量对绝热层玻璃化温度的影响。结果表明,芳纶纤维用量为4份时,绝热层烧蚀性能最佳,线烧蚀率为0.051 mm/s,质量烧蚀率为0.069 g/s;在选定的阻燃剂用量范围内,阻燃剂对绝热层烧蚀性能影响不大;所选增塑剂用量为20份时,玻璃化温度Tg可达-40℃。试验还对绝热层力学性能、硬度、粘接性能、比热容、导热等性能进行了测试,表明新研制的耐烧蚀橡胶有可能成为替代传统的石棉纤维和丁腈橡胶体系的固体火箭发动机燃烧室内绝热层。  相似文献   

8.
推进剂用铝粉与水反应特性研究   总被引:1,自引:0,他引:1  
用高压反应釜实时监测系统原位研究了铝/水反应的放热过程,提取了反应过程中3个特征温度(反应放热起始温度,反应速率最大温度,反应基本结束温度)和反应特征参数(反应放热起始温度点,反应速度,反应放热量),从而建立关于铝/水体系应用于固体推进剂的评价体系。同时,还探究了铝粉粒径、铝/水原料摩尔配比及加热功率对铝/水反应特性的影响规律。结果表明,在30~250℃温度区间内,纳米铝/水体系较微米铝/水体系性能更好,当铝粉粒径大于13μm时,没有明显放热;高功率加热条件有助于激发纳米铝迅速处于高活性状态,降低了反应放热起始温度,并高效释能;纳米铝/水的最佳原料摩尔配比区间为[1∶2,1∶2.2]。  相似文献   

9.
采用两步包埋法在C/C复合材料表面制备SiC-MoSi2抗氧化复合涂层,通过恒温氧化实验以及X射线衍射分析、扫描电镜观察,研究了包埋粉料中硅钼含量对复合涂层微观结构和高温抗氧化性能的影响。结果表明,随着包埋粉料中硅钼比的减小,涂层的厚度和致密性先增加后减小,硅钼质量比为6∶1时所制备的复合涂层具有较大的厚度和较为致密的结构,且MoSi2含量相对较高,体现出优良的抗氧化和抗热震性能,在1 500℃氧化87.3 h和经过9次1 500℃室温急冷急热后,带有该涂层的C/C试样失重仅为3.22%。穿透性裂纹的形成是长时间氧化后涂层失效的主要原因。  相似文献   

10.
针对未来固体推进剂燃烧模型的发展趋势,综述了近年来国外以详细化学动力学机理为基础建立的固体推进剂燃烧模型,并介绍了相关的理论公式和数值求解方法。模型可计算的燃烧特性参数包括燃速、压强指数、燃速温度系数、物种曲线、温度曲线、表面温度和火焰温度等。目前,模型已涉及到的物质包括硝胺类(RDX,HMX,CL-20,HNF)、叠氮类(GAP,BAMO,AMMO)、硝酸酯类(NG,NC,BTTN,TMETN,DEGDN)和硝酸盐类(ADN,AN)等。模型计算结果表明,预测的燃烧特性值与实验值比较一致,证明该机理可预测先进固体推进剂的燃烧特性和指导配方设计。但目前该类模型的主要局限是凝聚相内化学反应路径和反应速率以及凝聚相初生物种的确定问题。  相似文献   

11.
用分子动力学( MD)方法,对( PEG/NG/BTTN)/NPBA/HMX/AP/PEG/N-100//HTPB/TDI复杂的推进剂/衬层模型体系进行295 K-NVT模拟研究,展示了组分分子的浓度分布和迁移状况,发现HMX和NPBA分子有向界面层迁移趋势,而AP则呈平均分布态势。以RDX等量取代HMX后所得新配方的MD模拟研究表明,前者拉伸模量( E)、体模量( K)和剪切模量( G)、柯西压( C12-C44)和K/G值均有明显下降,表明新配方的刚性、强度和延展性均有下降;新配方中引发键(N—NO2)最大键长(1.528?)明显大于原配方中相应值(1.503?),预示新配方感度增大、安全性将下降;比较RDX、HMX与其他组分之间的结合能,前者小于后者,预示新配方的相容性较差。  相似文献   

12.
研究了不同增塑比和温度对硝酸酯(BG)增塑的聚乙二醇粘合剂(PEG)体系流变特性的影响。结果表明,聚乙二醇粘合剂体系存在临界增塑比,低于该临界增塑比时,体系粘度随增塑比增加而迅速降低;高于该临界增塑比时,体系粘度变化缓慢。当增塑比为2.8时,聚乙二醇粘合剂体系在50℃假塑性程度最高。  相似文献   

13.
为提高废弃HTPB推进剂中高氯酸铵(AP)组分的回收率,采用水/丙酮混合溶剂体系对HTPB推进剂中的AP进行提取。探讨了超声提取时间、提取温度、水/丙酮体积比、液料比、推进剂试样厚度对AP提取率的影响规律。采用傅里叶漫反射红外光谱仪(DRIFT)、X射线衍射仪(XRD)、扫描电镜(SEM)等手段对提取结果进行表征。结果表明,提取温度45℃、超声提取时间3.5 h、水/丙酮体积比2∶1、液料比10∶1、试样厚度3 mm是提取HTPB推进剂中AP组分的最佳工艺参数。在该工艺条件下,AP的回收率为96.3%,AP的纯度为96.5%。结果证明,水/丙酮混合体系可用于废弃HTPB推进剂中AP组分的分离回收。  相似文献   

14.
C/C组合喉衬烧蚀试验方法及微观形貌对比   总被引:2,自引:0,他引:2  
发展了一种C/C组合喉衬的烧蚀试验方法,采用该方法对C/C原始材料和经过热化学烧蚀后的C/C材料进行含铝工况试验,对比研究粒子对C/C材料表面微观形貌的侵蚀作用。试验表明,该方法能准确反映材料的实际烧蚀性能,确保对比材料烧蚀性能是在同工况下进行,也适用于各类不同喉衬材料的烧蚀性能对比。研究认为,热化学烧蚀起主导作用,有无粒子侵蚀对C/C材料烧蚀率的影响不大;粒子侵蚀对收敛段区域微观形貌影响最为严重,1号试件纤维单丝最尖锐,3号无锥尖形貌,2号呈圆台形貌,喉部区域无铝工况的纤维单丝比含铝工况尖锐;组合喉衬2号和3号因材料表面粗糙度的不同,造成微观形貌和烧蚀率差异,说明经烧蚀后的C/C材料再次烧蚀,其性能大幅下降,材料表面粗糙度越大,烧蚀率越大。  相似文献   

15.
为提高叠氮高能推进剂(BAMO-THF/A3/AP/HMX/Al)力学性能,避免脱湿现象,对中性聚合物类键合剂(NPBA)在推进剂中添加应用工艺进行了研究。基于NPBA对在硝胺表面包覆效果和键合剂反应速度的影响机理,通过实验研究了键合剂加入方式、溶剂用量、捏合温度和捏合时间对键合剂键合效果的影响。结果发现:为使键合剂均匀分散至捏合体系中,增大与硝胺的接触,需将键合剂溶于溶剂再添加至药浆中,捏合过程中通过抽真空抽除溶剂;较高的捏合温度利于提高药浆流平性,加快键合剂与固化剂的反应速度,改善不同组分间的相容性,但温度选择时应考虑生产设备的限制;延长捏合时间可使键合剂充分包覆硝胺,提高推进剂力学性能。研究确定的NPBA用于叠氮高能推进剂的最佳工艺条件为:采用溶剂RJ溶解NPBA,RJ与NPBA质量比为5∶1;在温度60℃下捏合60~90min,捏合后抽真空20min。采用该工艺时,出料的工艺性能良好,经固化制得的推进剂方坯力学性满足使用要求。  相似文献   

16.
为克服硝化纤维素NC低温力学性能差的缺点,合成羟烷基纤维素HEC,然后在HNO3/CH2 Cl2混合体系中对HEC硝化,进而制备硝化羟烷基纤维素NHEC,分析不同配比的硝化体系对产品氮量的影响,接着对NHEC系列产品进行动态力学分析(DMA),研究醚化度及酯化度对玻璃化转变温度的影响,最后对NHEC样品进行了拉伸测试.研究表明,若要合成高氮量NHEC,HNO3的含量应适中,含量少硝化不够充分,含量多产生凝胶,阻滞硝化反应向HEC里层扩散,反而降低产品氮量;根据DMA结果,与NC相比较,NHEC具有较好的柔性,较低的玻璃化转变温度,且醚化度越高,玻璃化转变温度越低;拉伸测试说明,NHEC在低温下韧而强,改善了NC低温发脆的缺点.  相似文献   

17.
采用红外光谱(IR)、力学性能测试等方法研究了含能增塑剂丁基硝氧乙基硝胺(Bu-NENA)和双(2,2-二硝基丙基)缩甲醛/双(2,2-二硝基丙基)缩乙醛混合物(BDNPF/A,两者质量比为1∶1)对3,3-二叠氮甲基氧丁环/四氢呋喃共聚醚(PBT)弹性体微相分离和力学性能的影响。结果表明,Bu-NENA对PBT弹性体的微相分离影响较大,随增塑比的增大,游离羰基比例提高,同时有序氢键化羰基比例显著减小,增塑比为1.0时有序氢键化羰基比例几乎为0,导致弹性体抗拉强度显著降低;BDNPF/A对PBT弹性体的微相分离特性则没有明显影响。两种含能增塑剂复配时,随着复配增塑剂中BDNPF/A比例的增加,弹性体的抗拉强度随之增大。  相似文献   

18.
为实现季戊四醇丙烯醛树脂(PEAR)/十二烷基苯磺酸(DBSA)体系在浇注PBX炸药中的应用以及获得该体系在工程应用中的工艺温度参数,采用粘度实验研究了体系的粘度特性,采用动态差示扫描量热法(DSC),通过模拟n级反应动力学模型、Kissinger微分法、Ozawa积分法以及Crane方程研究了体系的固化反应动力学。结果表明,50℃以上PEAR粘度几乎不受转速影响,PEAR与DBSA质量比大于25∶1,可保证浇注过程的顺利进行。PEAR/DBSA体系的凝胶化温度为345.92 K,固化温度为383.83 K,后处理温度为411.46 K。PEAR/DBSA体系固化反应为放热反应,反应的表观活化能为74.84 kJ/mol,指前因子为2.54×109min~(-1),反应级数为1.02,反应热为190.66 J/g。  相似文献   

19.
对两相邻激励器同时工作情况下合成射流控制宏观低速流流动进行了数值分析,讨论了两个激励器之间的相位差、频率比、幅值比等参数对主流偏转角度的影响,并将单激励器与相邻激励器对主流的矢量控制效果进行了对比。结果显示,相邻激励器对主流的控制效果优于单激励器;激励器相位差存在最佳值;在所取算例中,相邻激励器频率最佳比为1∶1;大的幅值比可明显提高控制效果。  相似文献   

20.
对一种用相容剂改善硅橡胶/三元乙丙橡胶(EPDM)共混热防护材料的性能进行了研究。在硅橡胶/EPDM共混体系中加入自制的相容剂以提高两者的相容性,给出共混工艺。用扫描电镜(SEM)、热重分析仪(TGA)、氧-乙炔烧蚀仪等方法研究了相容剂对热防护材料性能的影响。结果表明:该相容剂可改善硅橡胶与EPDM两相间的相容性,使混合体系更均匀,断裂处更平整,并显著提高了共混绝热复合材料的力学性能和热稳定性,其中:拉伸强度提高了20%以上;相容剂用量为10份时,硅橡胶/EPDM共混复合材料的初始降解质量分数10%的温度提到至437.5℃,发生最大质量损失速率时的温度提高至466.2℃;随着相容剂的增加,共混绝热复合材料的线烧蚀率逐渐下降,相容剂用量为10份时,线烧蚀率可下降至0.058mm/s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号