首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在 HMX/PEG/NG 复合高能推进剂中,加入少量新近开发的中性聚合物键合剂(NPBA),能够得到强烈的填料增强效果,其机理是因为产生了界面效应,而不是增加了粘合剂总体交联密度.NPBA 对 HMX 有良好的相对亲合性,在混合过程中它能聚集在固体表面.在固化过程 HMX 周围能形成高度交联的聚合物壳层,并和粘合剂以化学键相联,导致起始模量增加;而且,这些壳层似乎消除了颗粒周围的松软层,从而使填料增强效果所能维持到的延伸率要比未含 NPBA 的高许多.加入 NPBA 的步骤很简单,与预先包覆颗粒的办法有同样的效果,因此加入 NPBA 经济性更好.  相似文献   

2.
键合剂MAPO与氧化剂AP、HMX和RDX的相互作用   总被引:1,自引:0,他引:1  
综合运用量化计算、微热量热、质谱等手段,研究了键合剂MAPO与氧化剂AP、HMX和RDX的相互作用。研究结果表明,一方面,MAPO通过AP与氧化剂之间产生氢键作用,MAPO能与AP形成强氢键作用,但不能与HMX和RDX形成氢键,而AP能与HMX和RDX分别形成强氢键,且AP能分别形成分子内和分子间氢键;另一方面,AP作为催化剂能促使MAPO开环自聚,在氧化剂周围形成高模量层,从而改善氧化剂与粘合剂体系的粘接。  相似文献   

3.
采用分子动力学模拟(MD)计算与差示扫描量热法(DSC)相结合,研究六硝基六氮杂异伍兹烷(CL-20)与推进剂主要组分间的相互作用,用理论键长变化趋势分析实验结果。分子动力学模拟计算键长变化趋势结果表明,CL-20与黑索今(RDX)、奥克托今(HMX)混合体系的引发键N—NO2键最大键长Lmax随温度升高显著的单调递增,且当CL-20与RDX、HMX共混后,键长普遍增大,更容易断裂分解;而CL-20与硝化棉(NC)、硝化甘油(NG)共混后各个键长均与单质状态下存在时的键长相比变化不大,一些键长均小于其单质状态下存在时的键长,推测CL-20与NG、NC键混合后稳定性较好,不易发生键的断裂分解。DSC结果表明,CL-20与RDX和HMX之间在大于156℃的较高温度条件下存在强烈的相互作用,CL-20与NG、NC之间没有明显的化学作用。  相似文献   

4.
NPBA在黑索金表面的吸附研究   总被引:2,自引:0,他引:2  
建立了中性聚合物键合剂NPBA在RDX颗粒表面吸附的定量检测方法.实验结果表明,RDX对NPBA的吸附量随平衡吸附时NPBA在硝化甘油中的质量百分含量Ce增加而迅速增加,当Ce达到0.275%时出现一平台,此平台一直延伸到0.837%处,随后吸附量随Ce增加而继续缓慢增加;吸附理论研究分析表明,Ce较小时形成单分子层吸附,随Ce的增加,转化成多分子层吸附;BET多分子层吸附模型能对吸附等温线作出较好描述.  相似文献   

5.
借助Drago R S方程,采用反相气相色谱法(IGC)表征了丁羟四组元(AP/RDX/Al/HTPB)推进剂主要组分的表面酸碱性参数,计算出了主要组分间的界面酸碱作用焓ΔH_(AB).结果表明,BA键合剂与AP、RDX的界面作用焓显著大于HTPB聚氨酯基体与AP、RDX的界面作用焓,也显著大于BA键合剂与HTPB聚氨酯基体的作用焓,据此可预估BA键合剂可优先吸附在固体填料表面.因此,BA键合剂能大大提高推进剂基体/填料的界面粘接强度.  相似文献   

6.
为提高叠氮高能推进剂(BAMO-THF/A3/AP/HMX/Al)力学性能,避免脱湿现象,对中性聚合物类键合剂(NPBA)在推进剂中添加应用工艺进行了研究。基于NPBA对在硝胺表面包覆效果和键合剂反应速度的影响机理,通过实验研究了键合剂加入方式、溶剂用量、捏合温度和捏合时间对键合剂键合效果的影响。结果发现:为使键合剂均匀分散至捏合体系中,增大与硝胺的接触,需将键合剂溶于溶剂再添加至药浆中,捏合过程中通过抽真空抽除溶剂;较高的捏合温度利于提高药浆流平性,加快键合剂与固化剂的反应速度,改善不同组分间的相容性,但温度选择时应考虑生产设备的限制;延长捏合时间可使键合剂充分包覆硝胺,提高推进剂力学性能。研究确定的NPBA用于叠氮高能推进剂的最佳工艺条件为:采用溶剂RJ溶解NPBA,RJ与NPBA质量比为5∶1;在温度60℃下捏合60~90min,捏合后抽真空20min。采用该工艺时,出料的工艺性能良好,经固化制得的推进剂方坯力学性满足使用要求。  相似文献   

7.
采用动态接触角和界面张力仪,研究了星型GAP(S-GAP)与AP、RDX和HMX之间的表界面性能.结果表明,星型GAP与固体填料间的界面张力关系为γSL(S-GAP/RDX)<γSL(S-GAP/HMX)<γSL(S-GAP/AP);星型GAP与固体填料间的粘附功关系为Wa(S-GAP/AP)相似文献   

8.
通过二正丁胺滴定法,分别对端羟基聚醚(PEG)/苯异氰酸酯(PI)、键合剂(NPBA)/PI、安定剂(MNA)/PI体系进行了反应动力学研究,得到了相应体系在不同温度下的反应速率常数及活化能,并分析了反应速率的影响因素及3种组分对固化体系网络结构的影响。结果表明,PEG/PI、键合剂/PI、安定剂/PI体系的固化反应都为二级反应,活化能分别为24.96、43.27、9.1 kJ/mol;反应速率的影响因素可能是溶剂和各组分的结构;3种组分对网络结构的影响可能是聚醚/N-100形成体系的基本网络结构,键合剂提高界面过渡层的交联密度,安定剂/N-100降低体系的交联密度。  相似文献   

9.
采用高能氧化剂ADN部分代替AP,分别设计了AP/RDX、AP/RDX/Al、ADN/AP/RDX、ADN/AP/RDX/Al四种组分体系,利用差示扫描量热技术,研究ADN与高能组分的相互作用,尤其是对组分体系放热量的影响。结果表明,ADN的加入使ADN/AP/RDX组分体系的放热量增加了1.6倍,使ADN/AP/RDX/Al组分体系的放热量增加了1.68倍。同时,采用热-红-质联用技术,通过对分解产物的结构鉴定及整个过程中红外光谱强度和质谱质子流强度变化规律的研究,发现ADN的加入导致组分体系热分解反应生成更多的标准摩尔生成焓小的生成物,使得热分解反应的焓值更小,放热量增加。  相似文献   

10.
未老化NEPE推进剂/衬层粘接试件拉伸失效模式研究   总被引:1,自引:0,他引:1  
采用原位拉伸扫描电镜观测不同温度下NEPE推进剂/衬层粘接界面裂纹扩展规律,得出不同温度下裂纹产生位置均出现在推进剂和衬层连接处,且裂纹的扩展存在相互竞争关系;粘接性能较好时,粘接界面的好坏主要取决于推进剂/衬层界面附近推进剂性能。重点考察了会引起推进剂"脱湿"的HMX界面,利用纳米压痕仪及动态力学实验,得出当推进剂中含NPBA时,HMX周围存在一高模量层,且该高模量层的动态储能模量与温度呈反向关系。该高模量层的存在或消失会引起推进剂在宏观性能上发生变化,进而影响推进剂/衬层试件宏观力学性能。  相似文献   

11.
NEPE推进剂用中性聚合物键合剂的分子设计   总被引:7,自引:0,他引:7  
中性聚合物键合剂(NPBA)是美国Kim C.S.发明的一种新助剂。这种键合剂可显著提高NEPE推进剂的力学性能。本文根据Kim C.S.发表的专利和论文,介绍了降温相分离沉积包覆的原理,归纳提出了NPBA的分子设计方法,并且举例说明。  相似文献   

12.
添加剂HMX对AP/HTPB复合推进剂燃速行为的影响   总被引:1,自引:1,他引:1  
本文研究了添加剂HMX对AP丁羟推进剂燃速的影响。试验研究发现:在AP/HTPB复合推进剂中加入HMX时,其燃速降低;随着推进剂中HMX含量的增加,其燃速压力指数呈现出先下降后上升的“情形”;当HMX的粒度变细时,推进剂的压力指数显著降低。我们基于BDP模型的气相火焰结构设想,并强调燃烧表面上HMX熔层在燃烧过程中的作用,提出了一个多重竞争火焰—凝聚相结构和反应模型。它能解释AP—HMX双元系统丁羟推进剂的燃速行为和现象,并能对这种推进剂的燃速和压力指数调节的各种途径进行预示。此外,还提出了BDP和GDF模型一致性的设想和一些等价概念。  相似文献   

13.
采用差示扫描量热法(DSC)和表观活化能变化率,研究了高能硼氢燃烧剂(十氢十硼酸双四乙基铵,BHN)与缩水甘油叠氮聚醚(GAP)、黑索今(RDX)、奥克托金(HMX)、3-硝基-1,2,4-3-己基铅(NTO-Pb)、六硝基六氮杂异伍兹烷(CL-20)、铝粉(Al,12.18μm)、镁粉(Mg,200~325目)、3,4-二硝基呋咱基氧化呋咱(DNTF)和N-脒基脲二硝酰胺盐(GUDN)等含能组分的相容性;同时,还研究了BHN与聚对苯二甲酸乙二醇酯(PET,M=6 000)、聚乙二醇(PEG,M=10 000)、二异氰酸酯(N-100)、端羟基聚丁二烯(HTPB)、己二酸铜(AD-Cu)、2,4-二羟基苯甲酸铜(β-Cu)、邻苯二甲酸铅(φ-Pb)、炭黑(CB)、三氧化二铝(A12O3)、l,3-二甲基-1,3-二苯基脲(C2)、癸二酸二异辛酯(DOS)和高氯酸钾(KP)等惰性材料的相容性。研究结果表明,BHN与NTO-Pb、CL-20、A1、Mg、PET、PEG、N-100、HTPB、CB、Al2O3、C2、DOS和KP相容性较好,与GAP和HMX轻微敏感;AD-Cu、β-Cu和φ-Pb敏感,而与RDX、DNTF和GUDN不相容。由此可见,BHN与固体推进剂的主要组分相容性良好,可在HTPB/AP/Al体系的复合固体推进剂中应用。  相似文献   

14.
ADN与硝胺氧化剂的相互作用   总被引:1,自引:0,他引:1  
用高压差示扫描量热法(PDSC)和热重-微商热重法(TG-DTG),研究了高能氧化剂ADN(二硝酰胺铵)的热分解及其与HMX和RDX的相互作用。结果表明,ADN与HMX和RDX之间存在着强烈的相互作用。因部分HMX溶于熔融的ADN中,而参与了ADN组分的分解,ADN的放热分解峰温因压力升高而提高,而HMX产生了双分解峰。大量的RDX因ADN的熔融而提前液化与ADN一起分解,因ADN气相产物的抑制作用,使混合体系中RDX组分常压下的分解峰温后移,而RDX自身分解气相产物的催化作用,使其高压下的分解峰温前移。  相似文献   

15.
为研究HTPB复合固体推进剂老化过程中微结构损伤机理,设计了HTPB/TDI、AP+HTPB/TDI、RDX+HTPB/TDI、Al+HTPB/TDI及HTPB复合固体推进剂5个体系,表征在75℃、92 d的热加速老化过程中各复合体系及线性HTPB微结构变化规律。结果显示,在密闭热加速老化过程中,线性HTPB分子间不饱和的CC键相互交联,生成了高分子网络结构,是线性HTPB及各复合体系在老化过程中数均分子量及交联密度增大的原因之一;AP、RDX、Al粉等组分间相互作用加速了HTPB复合固体推进剂的热老化过程,且电镜未观察到组分与粘合剂产生"脱湿"现象。  相似文献   

16.
以环三亚甲基三硝胺(RDX)为主体炸药,聚甲基丙烯酸甲酯(PMMA)为粘接剂,采用超声辅助一步造粒技术,制备了RDX/PMMA微球。利用分子动力学(MD)模拟,对PMMA可作为RDX包覆材料的可行性进行了分析,并用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶变换近红外(FT-IR)和差示扫描量热仪(DSC)对粒子进行性能表征,通过撞击感度对微球的安全性能进行测试。通过模拟,结合能ERDXPMMA(610.69 k J/mol)ERDXF2602(499.93 k J/mol),即PMMA与RDX分子间作用力较强,相容性更好,可作为包覆RDX的粘接剂,与实验结果一致;XRD和FT-IR分析显示RDX/PMMA晶型结构没有发生转变;由DSC分析,与原料RDX相比,RDX/PMMA微球的热爆炸临界温度由220.95℃增加到227.53℃,热稳定性有所改善;RDX/PMMA微球特性落高从22.4 cm上升到了38.6 cm,安全性能明显提高;该方法将普通包覆的工作时间缩短了2.5倍,工作效率明显改善。  相似文献   

17.
通过配方组分对GAP推进剂燃烧性能影响的分析,确定了影响GAP微烟推进剂燃烧性能的主要因素,并在此基础上研究了推进剂燃烧性能的变化规律,通过选择合适的增塑剂、调整AP和HMX的相对含量及AP粒度级配,可使推进剂基础配方静态燃速在6 MPa下达到10.5~12.0 mm/s,3~10 MPa下静态压强指数可降至0.40以下。  相似文献   

18.
以正硅酸乙酯为前驱物,硝酸为催化剂,应用溶胶凝胶法,制备出了RDX/AP/SiO2复合含能材料。采用SEM、EDS能谱和BET比表面积对其结构进行了表征。结果表明,RDX/AP/SiO2复合材料是以SiO2为凝胶骨架,AP与RDX进入凝胶孔洞而形成的。运用热分析仪(TGA/DSC)对复合材料热性能进行测试。结果表明,RDX/AP/SiO2复合材料中的AP的分解温度大大提前,几乎与RDX同时分解,且分解热远高于物理共混的,提高了603.7 J/g,主要原因是RDX分解时释放的NO2等气体能促进AP的分解,同时AP分解提供的氧能使RDX分解产物进一步分解。  相似文献   

19.
新型中性聚合物键合剂设计与合成   总被引:2,自引:0,他引:2  
首先以三-(2-甲基氮丙啶基)氧化膦(MAPO)与丙烯酸(AA)为原料合成MAPO的衍生物,通过红外和质谱对产物进行了定性分析,用非水滴定的方法检测氮丙啶环的含量,通过正交试验设计得到了较优工艺条件:MAPO与AA的摩尔比为1:1,反应温度为70 ℃,反应时间为2.5 h,所得氮丙啶环含量最接近理论值.再利用该活性中间体与丙烯腈、丙烯酸羟乙酯共聚,得到改性的中性聚合物键合剂,通过接触角的测量,粘接性能预估表明,该新型中性聚合物键合剂与黑索金(RDX)、奥克托金(HMX)、高氯酸铵(AP)的界面浸润好、粘接强.  相似文献   

20.
采用单轴拉伸法和DSC法,研究了增塑比、扩链剂(BDO、PET、PEG)、交联剂(TN-J、TMP、PTT、T-PEG)对PBT/NENA/I-RDX(钝化RDX)/AP低Al体系钝感低特征信号推进剂力学性能和玻璃化转变温度的影响。结果表明,大分子扩链剂PEG可显著提高推进剂的最大伸长率,而抗拉强度基本不变;交联剂提高推进剂抗拉强度的作用大小依次为TN-JTMPPTTT-PEG,其中TN-J可同时发挥键合作用,提高最大伸长率。当增塑比为2.0、综合调节TN-J和PEG的含量,推进剂20℃抗拉强度0.9~1.3 MPa、最大伸长率40%~70%,70℃抗拉强度0.6~0.7 MPa、最大伸长率30%~50%,-55℃最大抗拉强度3.7~4.6 MPa、最大伸长率45%~75%,玻璃化转变温度-65℃,推进剂在-55~70℃时具有良好的力学性能,可满足工程化应用的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号