首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了获得变推力发动机用高压强指数聚叠氮缩水甘油醚(GAP)推进剂配方,采用靶线法研究了氧化剂的种类、粒径及配比、燃速催化剂的种类及含量、以及增塑比对GAP推进剂静态燃烧性能的影响规律,采用?118标准试验发动机对GAP推进剂进行了动态燃烧性能测试。研究表明,通过综合因素调节获得了一种高压强指数GAP推进剂配方,且当燃速催化剂RC-4含量1%时,GAP推进剂在1~15 MPa范围的动态压强指数高达0.66,满足变推力发动机对推进剂压强指数的要求,同时高压区间(9~15 MPa)的动态压强指数为0.51,低于1~15 MPa的压强指数,这有利于推进剂在高压范围内的稳定燃烧,为变推力发动机在高压范围内的正常工作提供依据。  相似文献   

2.
采用水下声发射法测试了推进剂静态燃速,用线性回归法计算了推进剂燃速压强指数;研究了GAP/CL-20高能固体推进剂中增塑比及固体组分AP、CL-20、Al粉粒度等配方组成因素对燃烧性能的影响。研究结果表明,增塑比一定范围内的变化不会对推进剂燃烧性能产生显著影响,其燃速和燃速压强指数基本不变;CL-20粒度减小或AP粒度增加均会导致燃速不同程度的降低,Al粒度减小也会使燃速减小,但在达到一定程度后,燃速又增加;推进剂燃速压强指数随CL-20、Al粉粒度减小和AP粒度增加而减小,并对其燃烧性能的影响机制进行了简单分析。  相似文献   

3.
利用水下声发射法测试静态燃速、线性回归法计算燃速压强指数,研究了GAP/CL-20高能固体推进剂中的固含量,固体组分AP/CL-20、CL-20/Al、Al/AP相对含量等配方组成因素对其燃烧性能的影响。结果表明,固含量在一定范围内升高,使燃速和燃速压强指数均升高;AP/CL-20中AP、CL-20/Al中CL-20含量的增加,均使燃速升高,而燃速压强指数下降;Al/AP中Al含量的增加,使推进剂的燃速下降,而燃速压强指数升高。最后,对GAP/CL-20高能固体推进剂燃速的主导机制进行了简单分析。  相似文献   

4.
通过对系统配方的推进剂进行多项实验,较为系统地研究了AP的含量与粒度对HMX型NEPE推进剂燃烧性能直接或间接的影响;依据推进剂燃烧波结构中的凝相机理,暗区理论和火焰性质,全面考察了AP的影响机制;并结合Al粉的存在,探讨了组分间相互作用的可能机理,分析结果表明:AP含量适当的增加与粒度级配可以在一定程度上改善推进剂的燃烧性能。  相似文献   

5.
PEPA/AP膏体推进剂配方研究   总被引:5,自引:2,他引:5  
开展了PEPA/AP型膏体推进剂配方研究。结果表明,PEPA/AP膏体推进剂的流变行为遵循Ostwalld幂定律,通过增稠剂种类和含量的改变可有效调节膏体推进剂的流变参数,增调剂NJ-4可使膏体推进剂具有良好的稳定性并保持稳定的流动性。燃烧调节剂FC-1能有效改善配方的点火和燃烧性能,拓宽了燃速范围(6.86MPa下,燃速15mm/s指高到15mm/s以上),显著降低了燃速压强指数(2.94-8.83MPa下,压强指数由0.71降至0.4)。  相似文献   

6.
开展了AP含量、粒度和HMX粒度、胺类化合物、有机化合物RTA和RTJ对推进剂燃烧性能的影响研究,并对RTJ/RTA组合催化剂在推进剂中的作用机理进行了初步分析。结果表明,配方中加入RTJ/RTA组合催化剂,实现了降低4、17.5 MPa燃速的同时降低低压段、高压段压强指数,通过DSC研究表明,RTJ/RTA对AP的分解有抑制作用。通过合理调节AP/HMX的相对含量、AP粒度和HMX的粒度以及采用RTJ/RTA组合催化剂,得到了固体含量为80%的低燃速配方。  相似文献   

7.
用DSC法研究了几种无铝推进剂的常压热分解特性。分析了燃速馔化剂对其点火性能的影响。在RDX/AP/HTPB推进剂配方中,催化剂使RDX的表观分解速率增大,而实际上减少了氧化性气体的生成量,不利于燃烧反应。AP分解温度提前对改善推进剂的点火性能起主要作用。在AO/AP/HTPB推进剂配方中,AO抑制了AP的分解,而催化剂的存在加速了AP的高低温分解,缩短了热反馈时间,表观分解热升高是改善点火性能的主要原因。燃速催化剂自身的分解放热也有利于促进推进剂点火燃烧。  相似文献   

8.
添加降速剂和调节RDX/AP含量是调节NEPE推进剂燃速的两种常用途径。采用水下声发射燃速测试仪、密闭燃烧器、BSF φ75 mm发动机等测试方法,研究了低燃速NEPE推进剂静态高压燃烧性能规律和发动机动态高压燃烧稳定性。研究发现,NEPE推进剂的中低压区燃速随着降速剂含量增大而显著降低,高压区燃速降低幅度相对较小,燃速-压强(r-p)曲线在15 MPa和45 MPa出现两个拐点,而且降低RDX含量对降低高压段燃速作用显著。BSF φ75 mm发动机试车结果表明,低RDX含量的C1配方(28%)最大工作压强不超过20 MPa,而高RDX含量(38%)的C4配方最大工作压强达到30 MPa。发动机稳定燃烧的最大压强随NEPE推进剂的燃速降低而下降,主要原因是低燃速推进剂铝粉燃烧效率降低使凝聚相燃烧产物含量和粒度增大。  相似文献   

9.
针对高燃速推进剂的发展需求,筛选出一种成本较低的二茂铁型碳硼烷衍生物TPT-01,研究了其作为燃速催化剂对高燃速丁羟(HTPB)固体推进剂工艺性能、燃烧性能、安全性能的影响及迁移性情况。结果表明,添加6%TPT-01的HTPB推进剂药浆粘度较低,工艺性能良好;HTPB推进剂药浆及成品药安全性能良好;HTPB推进剂6.86 MPa下燃速由24.2 mm/s提高至49.6 mm/s, 6.86~15 MPa的静态燃速压强指数为0.330;此外,TPT-01在HTPB推进剂中的迁移性低于辛基二茂铁,有利于HTPB推进剂的燃烧稳定性和界面粘接性能;相较于辛基二茂铁和正己基碳硼烷NHC物理掺混使用,TPT-01是一种效果更好的燃速催化剂。  相似文献   

10.
对大型发动机用的低燃速高固体含量HTPB推进剂进行了研制。采用超支化SU-2助剂降低推进剂药浆粘度为提高配方固体含量的方式,优化SU-2助剂含量,研制出固体质量分数89%的推进剂配方。依据抑制AP分解的质子转移机理,分别用高氯酸烷基胺衍生物A1N、草酸铵T29降燃速剂,获取低燃速HTPB推进剂,针对试验得到的推进剂性能数据,分析了单项降燃速剂的推进剂燃烧性能存在不足,提出了选用价廉的高氯酸烷基胺衍生物A1N/草酸铵T29/细AP复配方法,既降低燃速又能降低压强指数。经装药试验验证,获得6.86 MPa燃速5.185 mm/s,3~11 MPa压强指数0.328,密度≥1.80 g/cm3,20℃最大拉伸强度σm≥1.0 MPa,-40℃最大伸长率εm≥61.0%;5 h使用期粘度为2625 Pa·s;综合性能优良的高固体含量低燃速HTPB推进剂。以提高推进剂固体含量增加密度,增大HTPB推进剂比冲的设计方法,可供低燃速HTPB推进剂的发动机借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号