首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multiple model adaptive predictor is applied to a virtual environment flight simulator to remove the effect of computational and scene-rendering delay time. Angular orientation of the user's head is predicted a period of time into the future, so that the scene can be rendered appropriately by the time the user actually looks in that direction. Single nonadaptive predictors cannot adequately cover the dynamic range of head motion. By using three dissimilar models of head motion upon which to base the individual elemental filters within the multiple model adaptive estimator (MMAE) algorithm, an MMAE is designed which outperforms the nonadaptive Kalman predictor proposed by Liang (1991)  相似文献   

2.
The performance of a multiple model adaptive estimator (MMAE) for an enhanced correlator/forward-looking-infrared tracker for airborne targets is analyzed in order to improve its performance. Performance evaluation is based on elemental filter selection and MMAE estimation error sizes and trends. The elemental filters are based on either first or second-order acceleration models. Improved filter selection is achieved by using acceleration models that separate the frequency content of acceleration power spectral densities into non-overlapping regions with second-order models versus the more traditional overlapping regions with first-order models. A revised tuning method is presented. The maximum a posteriori (MAP) versus the Bayesian MMAE is investigated. The calculation of the hypothesis probability calculation is altered to see how performance is affected. The impact of the ad hoc selection of a lower bound on the elemental filter probability calculation to prevent filter lockout is evaluated. Parameter space discretization is investigated  相似文献   

3.
We propose a modified multiple model adaptive estimation (MMAE) algorithm that uses the time correlation of the Kalman filter residuals, in place of their scaled magnitude, to assign conditional probabilities for each of the modeled hypotheses. This modified algorithm, denoted the residual correlation Kalman filter bank (RCKFB), uses the magnitude of an estimate of the correlation of the residual with a slightly modified version of the usual MMAE hypothesis testing algorithm to assign the conditional probabilities to the various hypotheses that are modeled in the Kalman filter bank within the MMAE. This concept is used to detect flight control actuator failures, where the existence of a single frequency sinusoid (which is highly time correlated) in the residual of an elemental filter within an MMAE is indicative of that filter having the wrong actuator failure status hypothesis. This technique results in a delay in detecting the flight control actuator failure because several samples of the residual must be collected before the residual correlation can be estimated. However, it allows a significant reduction of the amplitude of the required system inputs for exciting the various system modes to enhance identifiability, to the point where they may possibly be subliminal, so as not to be objectionable to the pilot and passengers  相似文献   

4.
A moving-bank multiple model estimator/controller (MMAE/MMAC) based on linear system, quadratic cost, and Gaussian noise (LQG) assumptions is used to quell unwanted vibrations in a simulated large flexible space structure. The structure, known as the Space Integrated Controls Experiment (SPICE), exists at Phillips Laboratory, Kirtland Air Force Base, New Mexico. The structure consists of a large platform and a smaller platform connected by a tripod of flexible legs. The purpose of the control system is to maintain a very precise line-of-sight (LOS) vector through the center of the spacecraft. Kalman filtering, used to estimate the position and velocity of the bending modes of the structure, and LQG control techniques are the primary design tools used in the MMAE/MMAC algorithms. Implementing a parallel bank of filters increases robustness when uncertainties exist in the system model, here specifically allowing adaptation to uncertain and changing undamped natural frequencies of the bending modes of the structure. A moving-bank algorithm is utilized to reduce the computational loading. The MMAE/MMAC design provides a well-suited method of estimating variations in the vector of undamped natural frequencies and quelling vibrations in the structure. The MMAE/MMAC was able to track numerous parameter changes and jumps while providing adequate control for the structure.  相似文献   

5.
The mean and covariance of a Kalman filter residual are computed for specific cases in which the Kalman filter model differs from a linear model that accurately represents the true system (the truth model). Multiple model adaptive estimation (MMAE) uses a bank of Kalman filters, each with a different internal model, and a hypothesis testing algorithm that uses the residuals from this bank of Kalman filters to estimate the true system model. At most, only one Kalman filter model will exactly match the truth model and will produce a residual whose mean and standard deviation have already been analyzed. All of the other filters use internal models that mismodel the true system. We compute the effects of a mismodeled input matrix, output matrix, and state transition matrix on these residuals. The computed mean and covariance are compared with simulation results of flight control failures that correspond to mismodeled input matrices and output matrices  相似文献   

6.
Multipath-adaptive GPS/INS receiver   总被引:2,自引:0,他引:2  
Multipath interference is one of the contributing sources of errors in precise global positioning system (GPS) position determination. This paper identifies key parameters of a multipath signal, focusing on estimating them accurately in order to mitigate multipath effects. Multiple model adaptive estimation (MMAE) techniques are applied to an inertial navigation system (INS)-coupled GPS receiver, based on a federated (distributed) Kalman filter design, to estimate the desired multipath parameters. The system configuration is one in which a GPS receiver and an INS are integrated together at the level of the in-phase and quadrature phase (I and Q) signals, rather than at the level of pseudo-range signals or navigation solutions. The system model of the MMAE is presented and the elemental Kalman filter design is examined. Different parameter search spaces are examined for accurate multipath parameter identification. The resulting GPS/INS receiver designs are validated through computer simulation of a user receiving signals from GPS satellites with multipath signal interference present The designed adaptive receiver provides pseudo-range estimates that are corrected for the effects of multipath interference, resulting in an integrated system that performs well with or without multipath interference present.  相似文献   

7.
A multiple model adaptive estimation (MMAE) algorithm is implemented with the fully nonlinear six-degree-of-motion, Simulation Rapid-Prototyping facility (SRF) VISTA F-16 software simulation tool. The algorithm is composed of a bank of Kalman filters modeled to match particular hypotheses of the real world. Each presumes a single failure in one of the flight-critical actuators, or sensors, and one presumes no failure. For dual failures, a hierarchical structure is used to keep the number of on-line filters to a minimum. The algorithm is demonstrated to be capable of identifying flight-critical aircraft actuator and sensor failures at a low dynamic pressure (20,000 ft, 0.4 Mach). Research includes single and dual complete failures. Tuning methods for accommodating model mismatch, including addition of discrete dynamics pseudonoise and measurement pseudonoise, are discussed and demonstrated. Scalar residuals within each filter are also examined and characterized for possible use as an additional failure declaration voter. An investigation of algorithm performance off the nominal design conditions is accomplished as a first step towards full flight envelope coverage  相似文献   

8.
 在建立飞机环控系统数学模型的基础上,提出采用双模型滤波方法进行参数估计、状态预测和故障诊断,提高飞机环控系统故障诊断的快速性和准确性。如果采用最小二乘算法,参数估计是静态的,故障诊断延迟一般较大;采用单模型扩展Kalman滤波算法,虽然能够实现动态估计,但不能同时兼顾稳态过程和过渡过程(突发故障)的参数估计,导致误差较大。为了解决上述难题,针对飞机环控系统换热器故障诊断,提出两模型滤波算法。该算法由两个滤波器组成,分别用于跟踪系统的稳态和过渡过程。由于采用了两滤波器模型分别匹配不同的系统特征,能够改善飞机环控系统不同状态下的参数估计和状态预测性能,从而提高系统故障诊断的精度和速度。仿真结果证实了该算法的有效性。  相似文献   

9.
The application of moving-bank multiple model adaptive estimation and control (MMAE/MMAC) algorithms to an actual spade structure (Space Integrated Controls Experiment (SPICE)) being examined at Phillips Laboratory at Kirtland AFB, NM, is presented. The structure consists of a large platform and a smaller platform connected by three legs in a tripod fashion. Kalman filtering and LQG (linear system, quadratic cost, Gaussian noise) control techniques are utilized as the primary design tools for the components of the MMAE/MMAC. Implementing a bank of filters or controllers increases the robustness of the algorithms when uncertainties exist in the system model, whereas the moving bank is utilized to reduce the computational load. Several reduced-order models are developed from the truth model using modal analysis and modal cost analysis. The MMAE/MMAC design with a substantially reduced-order filter model provides an excellent method to estimate a wide range of parameter variations and to quell oscillations in the structure.  相似文献   

10.
An equivalent filter bank structure for multiple model adaptive estimation (MMAE) is developed that uses the residual and state estimates from a single Kalman filter and linear transforms to produce equivalent residuals of a complete Kalman filter bank. The linear transforms, which are a function of the differences between the system models used by the various Kalman filters, are developed for modeling differences in the system input matrix, the output matrix, and the state transition matrix. The computational cost of this new structure is compared with the cost of the standard Kalman filter bank (SKFB) for each of these modeling differences. This structure is quite similar to the generalized likelihood ratio (GLR) structure, where the linear transforms can be used to compute the matched filters used in the GLR approach. This approach produces the best matched filters in the sense that they truly represent the time history of the residuals caused by a physically motivated failure model  相似文献   

11.
根据对飞机刹车过程动力学分析与建模,本文提出了一种基于无味卡尔曼滤波(UKF)的模糊神经网络控制律。本控制律结合了无味卡尔曼滤波对机体速度的良好估计效果和模糊神经网络控制器对不同系统参数的适应能力,能够很好完成对最佳滑移率的追踪任务。Matlab仿真试验结果显示,基于无味卡尔曼滤波的模糊神经网络控制器可以准确的估计飞机滑跑时的速度,改善飞机防滑刹车系统性能,提高刹车效率。  相似文献   

12.
Previous research at the Air Force Institute of Technology (AFIT) has resulted in the design of a differential Global Positioning System (DGPS) aided INS-based (inertial navigation system) precision landing system (PLS) capable of meeting the FAA precision requirements for instrument landings. The susceptibility of DGPS transmissions to both intentional and nonintentional interference/jamming and spoofing must be addressed before DGPS may be safely used as a major component of such a critical navigational device. This research applies multiple model adaptive estimation (MMAE) techniques to the problem of detecting and identifying interference/jamming and spoofing in the DGPS signal. Such an MMAE is composed of a bank of parallel filters, each hypothesizing a different failure status, along with an evaluation of the current probability of each hypothesis being correct, to form a probability-weighted average state estimate as an output. For interference/jamming degradation represented as increased measurement noise variance, simulation results show that, because of the good failure detection and isolation (FDI) performance using MMAE, the blended navigation performance is essentially that of a single extended Kalman filter (EKF) artificially informed of the actual interference noise variance. However, a standard MMAE is completely unable to detect spoofing failures (modeled as a bias or ramp offset signal directly added to the measurement). This work describes a moving-bank pseudoresidual MMAE (PRMMAE) to detect and identify such spoofing. Using the PRMMAE algorithm, spoofing is very effectively detected and isolated; the resulting navigation performance is equivalent to that of an EKF operating in an environment without spoofing  相似文献   

13.
合适的飞行性能监测(APM)参数筛选方法可实现国产民用巡航飞机性能监控参数的高效筛选,为飞机性能分析计算提供可靠的数据基础。在无迹卡尔曼滤波(UKF)中引入 Sage-Husa 噪声估计器,构造自适应无迹卡尔曼滤波(AUKF),利用 AUKF 对快速存取记录器(QAR)数据进行降噪;给出稳定巡航参数筛选的标准,采用改进滑动时间窗口算法对稳定巡航参数进行筛选,并通过国产 ARJ21 飞机的样本数据进行验证。结果表明:自适应无迹卡尔曼滤波算法能够提高数据的可靠性,改进滑动时间窗口算法使筛选效率提高约 50%。  相似文献   

14.
Three major enhancements to a previously devised multiple model adaptive estimator (MMAE) for target image tracking are developed and analyzed. These are: allowing some of the elemental filters to have rectangular fields of view and to be tuned for target dynamics that are harsher in one direction than others; considering both Gauss-Markov acceleration models and constant turn-rate models for target dynamics; and devising an initial target acquisition algorithm to remove important biases in the estimated target template to be used in a correlator within the tracker. Particularly good adaptation responsiveness is demonstrated in the multiple model algorithm's ability to handle harsh maneuver onset, yielding performance essentially equivalent to that of the best artificially informed tracking algorithm  相似文献   

15.
We describe performance improvement techniques for a multiple model adaptive estimator (MMAE) used to detect and identify control surface and sensor failures on an unmanned flight vehicle. Initially failure identification was accomplished within 4 s of onset, but by removing the “β dominance” effects, bounding the hypothesis conditional probabilities, retuning the Kalman filters, increasing the penalty for measurement residuals, decreasing the probability smoothing, and increasing residual propagation, the identification time was reduced to 2 s  相似文献   

16.
一种新的基于机动检测的机动目标跟踪算法   总被引:3,自引:0,他引:3  
针对Kalman滤波跟踪机动目标发散和目前多数自适应Kalman滤波算法对运动模型适应性不强的问题,提出了一种新的基于机动检测的机动目标跟踪算法,通过实时自适应的改变滤波模型提高对机动目标跟踪精度。对这种方法与Kalman滤波算法进行了计算机仿真比较,结果表明,该方法计算量小,可实时精确地自适应匹配目标的运动模型,可实现对机动目标稳定可靠的跟踪。  相似文献   

17.
Passive techniques to locate ground emitters from an airborne platform provide threat warning to aircraft in hostile airspace while maintaining the electronic silence of the vehicle. These techniques are based on triangulation methods and extended Kalman filters, using only hearing measurements. An approach that takes into consideration the maximum measurement error of the sensor and approximates an area of uncertainty of the emitter location by polygons is proposed. The performance of this algorithm is demonstrated by simulation results, and an example is shown for the comparison of this algorithm and the extended Kalman filter approach  相似文献   

18.
梁锋  张林昌 《航空学报》1987,8(5):296-302
引言 等效系统法是国外提出的评价带有复杂控制系统的飞机飞行品质的一种较有效的方法。它的基本思想是寻找一个带有等效时间延迟的低阶系统,使该系统具有或近似保留给定增稳飞机的高阶系统输出响应的主导特性,然后将低阶系统参数与规范要求相比  相似文献   

19.
The dominant factor in determining the computation time of the Kalman filter is the dimension n of the model state vector. The number of computations per iteration is on the order of n3. Any reduction in the number of states will benefit directly in terms of increased computation time. In this paper, a high order model in integrated GPS/INS is described first, then a reduced-order model based on the high-order model, is developed. Finally, a faster tracking approach for Kalman filters is discussed. A typical aircraft trajectory is designed for a complex high-dynamic aircraft flight experiment. A Monte Carlo analysis shows that the reduced order model presented in this paper provides satisfactory accuracy for aircraft navigation  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号