首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
有等离子体层的导体圆柱空间散射特性的分析   总被引:3,自引:0,他引:3  
分别给出平行极化和垂直极化平面波入射到圆柱体时产生的散射场通用公式及其散射参数定义式,对金属圆柱体带有不同厚度的欠密状态等离子体层,过密状态等离子层,有损耗介质层等条件下的RCS计算进行了全面的数值分析,分析了影响双站RCS的各种因素并给出了数值结果,获得一些有用的结论,为进一步研究再入体的散射机理提供有用的参考.  相似文献   

2.
一种计算多层涂覆目标RCS的快速算法   总被引:2,自引:0,他引:2  
提出一种用于计算表面涂覆多层雷达吸波材料目标雷达散射截面(RCS,Radar Cross Section)的快速算法.对于拟合成面元和棱边的多层涂覆目标,应用物理光学法及阻抗边界条件计算多层涂覆面元的RCS,并将物理绕射理论与等效电磁流法结合,用于计算多层涂覆棱边的RCS.在计算中,预先计算出目标不同涂覆表面反射系数矩阵,有效地提高了计算的速度和效率.应用上述方法计算表面涂覆单层及多层涂覆材料的平板和典型旋转体的RCS,通过与文献给定结果的对比,验证了该算法的有效性.对多层涂覆复杂目标RCS的仿真计算结果,进一步表明了该方法的准确性以及在提高计算速度方面的效果.   相似文献   

3.
利用阵列分析技术和矩量法相结合的方法求解二维周期渐变形状角锥散射体的散射,导出TE波入射时散射场的表达式。计算了金属渐变角锥电磁散射的例子,给出二面角散射体的双站RCS和后向散射随频率变化的规律,以及给出完整散射体对TE波的散射截面。计算结果与商用软件计算所得的结果相吻合,表明该方法在工程运用上是可行的。  相似文献   

4.
RCS分析中多次反射的计算及程序实现技术   总被引:2,自引:0,他引:2  
介绍目标RCS分析计算中多次散射的计算方法,计算多次散射时主要考虑面元-面元之间的相互作用,计算过程采用几何光学法(GO)、物理光学法(PO),在总后向RCS计算中还运用了等效电磁流法.同时,文中讨论计算多次散射的程序实现技术.最后,给出计算例子,考虑多次散射时总的后向RCS计算结果与前人发表的实验结果相吻合.   相似文献   

5.
基于IGES文件输入的图形电磁计算方法研究   总被引:4,自引:2,他引:2  
在不同波段不同极化下,应用图形电磁计算(GRECO)法计算了某模型的高频雷达散射截面(RCS).采用计算机硬件完成遮挡计算,通过五光源分两次照射获取模型表面法矢信息.在计算镜面散射时,利用两个Sinc函数的乘积消除物理光学计算中的奇异点,棱边边缘绕射用等效电磁流法计算.最终计算结果和试验结果吻合较好,表明这种方法估算目标RCS快捷有效,可以应用于工程分析.在目标造型端添加了识别读入IGES文件的端口后,解除了对模型造型格式的严格限制,扩大了其应用范围.   相似文献   

6.
基于MLFMA的飞行器锯齿边板散射特性分析   总被引:8,自引:0,他引:8  
为精确求解散射问题,采用混合场积分方程、多层快速多极子算法(MLFMA, Multilevel Fast Multipole Algorithm)和共轭梯度算法的迭代技术,并改进了多极子模式数.金属球双站雷达散射截面(RCS,Radar Cross Section)的算例表明,该方法在保证精度的前提下,降低了内存和计算时间;分析了锯齿边板的电磁散射特性,总结了锯齿边板相对于直边板在不同角域内的RCS减缩特性以及RCS减缩与入射频率变化之间的关系:随着入射频率的增高,RCS减缩效果迅速提高,且垂直极化减缩效果较水平极化减缩效果好.该结论可以用来提高飞行器的隐身性能.   相似文献   

7.
用缩比模型测量结果预估是研制阶段获得大尺寸目标雷达散射截面(RCS)的常用方法,但根据经典电磁相似理论,严格满足缩比条件的涂覆吸波材料缩比目标测量难以实现。针对涂覆吸波材料缩比目标的RCS预估问题,提出了采用多元对数线性回归模型的预估方法。设计了2组圆柱模型,在微波暗室中对缩比因子分别为1、2、4、8的2组模型进行了测试。在完成角度矫正等数据预处理基础上,将缩比模型RCS数据作为训练集代入模型当中求得参数,对原模型的RCS进行预估并与实际实测数据进行对比分析。结果表明:所提方法预估数据与实测数据曲线拟合度较好,相较于传统平方率模型,误差下降了3~5 dB,在回归模型中加入吸波材料因子后误差进一步下降了0.3~0.8 dB。   相似文献   

8.
年丰  王伟 《宇航计测技术》2007,27(5):1-5,21
对风云系列气象卫星微波成像仪、微波温度计热真空实验黑体定标源的电磁特性进行了仿真优化设计研究,优化目标为后向RCS最小以实现黑体法向发射率接近1。基于可跨越介质边界的亚网格时域有限差分法分别对方锥和圆锥金属基体在非涂覆和涂覆吸波材料为0.5~3.0 mm厚度,频率为10.65 GHz的情况进行了对比分析,圆锥的最佳涂覆厚度为1.5 mm,其后向RCS值明显优于方锥的最佳涂覆厚度2.5 mm达7.5 dBsm.在10.65 GHz频段内采用圆锥结构设计的黑体定标源可实现更高的发射率,同时由于最佳涂覆厚度比较薄,可以有效降低劈尖结构产生的温度梯度,实现定标源的温度均匀性。  相似文献   

9.
对三角 板角反射器的散射特性进行分析,提出了其在单站及收发分离单站RCS(Radar Cross Section)定标测试中的应用方案.三角板角反射器后向散射方向图的主瓣部分很宽且很平缓,并具有较强的方位稳定性,适用于较大RCS目标的单站定标测试.但在收发分离的单站RCS定标测试系统中,发射馈源与接收馈源间存在一个小双站角,这会使得三角板角反射器散射方向图的主瓣部分急剧下降,并呈现较强的纹波,从而无法利用其进行精确定标.而其散射方向图的某一旁瓣部分,在存在小双站角时的变化不大,且同样具有较强的方位稳定性,故可利用旁瓣峰值作为收发分离单站RCS测试中的定标参考点.  相似文献   

10.
 共形微带天线间的互耦对微带天线阵的性能有重要影响,另一方面,为了防止对微带天线阵的自然的或人为的损害,需要在天线阵表面涂覆介质层或给其加上天线罩,因此在设计共形微带天线与阵列时也应当考虑覆盖层或天线罩的影响.利用严格的全波法分析和计算了介质覆盖、探针馈电的柱面共形微带天线单元间的互耦,给出了E面和H面互耦的数值结果,并讨论了柱面曲率半径和贴片间距对互耦的影响,给出了互耦随频率的变化关系,同时也研究了衬底介质和覆盖层对互耦的作用.  相似文献   

11.
局部涂敷RAM复杂目标的电磁散射特性计算   总被引:1,自引:0,他引:1  
给出了平行和垂直极化平面波投射到物体时散射场的通用表达式,阐述了确定目标主要回波源位置的方法,提出选取吸波材料涂敷区域的有效方法,同时分析了局部涂敷吸波材料(RAM)的复杂目标电磁散射特性的计算,最后给出计算结果,并经验证.这种方法提高了复杂目标雷达散射截面计算的精度,适用于工程应用.  相似文献   

12.
用时域有限差分法计算目标的雷达散射截面时,一般用连接边界来引入平面入射波.理想情况下,当总场区没有散射目标时,该区域仅有入射波,散射场区电磁波为0.但在实际计算过程中,散射场区的电磁波一般不会严格等于0,这是因为在连接边界引入入射波时产生了电磁泄漏.一维情形下,用散射场区电场的平方和来衡量电磁泄漏程度.二维情形下,用等效原理将散射场区的电磁场进行远场外推,得到雷达散射截面,以此衡量电磁泄漏的大小.研究表明:时间步长、入射角度都能影响电磁泄漏大小.为使电磁泄漏较小,时间步长应接近于稳定性要求的最小步长,入射方向应避免垂直于计算区域边界.  相似文献   

13.
提出了求解复杂飞行器目标谐振区散射场的回路线栅法.回路线栅法的基本思想是以其上流动着感应电流的三维线栅回路网格来模拟在入射波激励下的连续金属表面,与以往单独分段的线栅模型不同,本文利用构成闭合回路的线栅构造每一个金属面元,而不采用单独分段线栅电流表示面元的被激电流,从而使得基尔霍夫定律在每个节点处能够得到自动满足.通过分析目标几何特性建立相应的回路线栅电磁模型,并利用共轭梯度快速傅利叶变换法(CGFFT),给出谐振区复杂飞行器目标的雷达散射截面(RCS)结果.  相似文献   

14.
飞行器结构缝隙电磁散射问题的研究   总被引:2,自引:2,他引:2  
提出了求解飞行器表面结构缝隙电磁散射的方法,由场等效原理及场连续条件,运用矩量法解关于缝隙口面上等效磁流为未知数的方程,由此得到长直缝隙口面上的等效磁流的数学模型,基于上述理论,由座舱结构缝隙建立无了大导电曲屏面上的缝隙的数学模型,将曲屏面上缝隙给合理划分成若干个似的直缝隙,求解每一段直缝隙的等效磁流,由辐射积分方程求解该等效磁流的散射,由这些散射场的叠加得到曲屏面上的缝隙的散射场,最后给出飞行器  相似文献   

15.
    
缝隙散射是隐身飞机散射的重要组成部分,已有的缝隙散射研究并未给出小角域(-30°~30°)入射时缝隙散射的结果。基于叠加原理的载体对消方法应用于缝隙散射源的电磁散射计算中,可以更精确地研究缝隙的电磁散射特性。通过单缝隙板的一维成像验证了载体对消方法的有效性和准确性,然后研究了在10 GHz频率下,缝隙散射在小角域内随宽度、长度的变化规律,以及极化特性。不同缝隙宽度的研究结果表明:在小角域内,当缝隙宽度小于1/4波长时,水平极化下缝隙散射比垂直极化下大,而当缝隙宽度大于1/4波长时,水平极化下缝隙散射比垂直极化下小;当缝隙宽度增大时,缝隙在垂直极化下的雷达散射截面(RCS)增长速度更快。不同缝隙长度的研究结果表明:在小角域内,缝隙电磁散射均值随着缝隙长度(200~1 000 mm)的增加而增加,散射均值的大致范围:-22.2~-8.4 dBsm(水平极化),-27.3~-13.3 dBsm(垂直极化);在小角域内,2种极化下,可拟合出RCS均值与缝隙长度的关系,得到某一缝隙长度的RCS,可计算出不同缝隙长度对应的RCS的大致范围。  相似文献   

16.
雷达目标低频RCS可视化计算   总被引:1,自引:0,他引:1  
随着计算机进一步发展,科学计算可视化越来越受到重视;而适用于低频区RCS(雷达散射截面)计算的传统方法MOM(矩量法),也越来越显示其价值;为了方便电磁计算和电磁建模,基于先进的计算机三维造型技术和可视化编程手段,采用回路线栅矩量法,计算低频区三维雷达目标RCS,与实验数据比较取得良好的计算结果,对RCS理论计算的工程应用起重要作用.   相似文献   

17.
复杂目标GRECO方法的分屏显示计算   总被引:2,自引:1,他引:1  
图形电磁计算(GRECO)是一种计算复杂目标雷达散射截面(RCS)的有效方法,但必须先有一个易于提取外形参数的数据文件.基于GRECO法,针对用各种通用商业软件造型生成的模型文件,利用商业软件Rhino进行转化,生成适于RCS计算的数据文件,这种处理数据的方法具有广泛的适用性,且不会丢失任何局部细节.通过分屏显示计算方法,提高了对电大尺寸目标的计算精度;采用OpenGL的显示列表技术使得程序运行花费较少的时间.结合GRECO的特点,提出了一种分析目标散射源的简便的方法,便于分析目标的雷达散射截面特性.结果表明,本方法与面劈法的计算结果吻合较好,具有较好的工程应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号