首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
局部涂敷RAM复杂目标的电磁散射特性计算   总被引:1,自引:0,他引:1  
给出了平行和垂直极化平面波投射到物体时散射场的通用表达式,阐述了确定目标主要回波源位置的方法,提出选取吸波材料涂敷区域的有效方法,同时分析了局部涂敷吸波材料(RAM)的复杂目标电磁散射特性的计算,最后给出计算结果,并经验证.这种方法提高了复杂目标雷达散射截面计算的精度,适用于工程应用.  相似文献   

2.
应用可视化图形电磁计算(GRECO)技术求解高频区复杂目标面元与棱边后向散射场.对低散射截面的座舱而言,行波效应往往贡献较为显著,在某些空域内行波值甚至超过面元与棱边贡献,通过GRECO与行波混合法分析座舱目标的电磁散射特性,并给出其雷达散射截面(RCS)值.   相似文献   

3.
基于面元分组的电磁遮挡算法及其优化   总被引:5,自引:0,他引:5  
用物理光学法计算复杂目标的雷达散射截面(RCS,Radar Cross Section)时,通过面元沿电磁波入射方向的重叠关系和景深来判断面元之间的遮挡.将面元投影在与电磁波入射方向垂直的平面上进行分组,使同组的面元距离相近.在计算中只需对同组的面元判断遮挡关系,避免了所有面元的两两遮挡判断,从而节省计算时间,并对分组进行了优化,使计算时间最少.算例表明,基于面元分组的遮挡判断方法可行,能够大大提高计算效率.  相似文献   

4.
在中国首次使用欧洲非相干散射雷达三站系统研究空间碎片.以美国OSCAR-3报废业余通信卫星的三站雷达探测散射截面为例,采用欧洲非相干散射雷达三站标准电离层实验模式,分析三站雷达目标散射截面的差异性.比较三站雷达的探测结果表明,Sodanky站雷达散射截面比Tromso站散射截面精度提高5倍;按照中国科学院国家天文台预报理论模型轨道计算,通过理论方向图修正雷达散射截面后,在不知道美国太空监测网所公布的数值时,Tromso站雷达散射截面具有参考价值.计算结果证实三站雷达能提供较为准确的雷达散射截面.   相似文献   

5.
基于IGES文件输入的图形电磁计算方法研究   总被引:4,自引:2,他引:2  
在不同波段不同极化下,应用图形电磁计算(GRECO)法计算了某模型的高频雷达散射截面(RCS).采用计算机硬件完成遮挡计算,通过五光源分两次照射获取模型表面法矢信息.在计算镜面散射时,利用两个Sinc函数的乘积消除物理光学计算中的奇异点,棱边边缘绕射用等效电磁流法计算.最终计算结果和试验结果吻合较好,表明这种方法估算目标RCS快捷有效,可以应用于工程分析.在目标造型端添加了识别读入IGES文件的端口后,解除了对模型造型格式的严格限制,扩大了其应用范围.   相似文献   

6.
复杂目标GRECO方法的分屏显示计算   总被引:2,自引:1,他引:1  
图形电磁计算(GRECO)是一种计算复杂目标雷达散射截面(RCS)的有效方法,但必须先有一个易于提取外形参数的数据文件.基于GRECO法,针对用各种通用商业软件造型生成的模型文件,利用商业软件Rhino进行转化,生成适于RCS计算的数据文件,这种处理数据的方法具有广泛的适用性,且不会丢失任何局部细节.通过分屏显示计算方法,提高了对电大尺寸目标的计算精度;采用OpenGL的显示列表技术使得程序运行花费较少的时间.结合GRECO的特点,提出了一种分析目标散射源的简便的方法,便于分析目标的雷达散射截面特性.结果表明,本方法与面劈法的计算结果吻合较好,具有较好的工程应用价值.  相似文献   

7.
用物理光学法计算理想导体雷达散射截面过程中,需要基于无限大切平面假设计算表面电流密度.只有对表面比较光滑的电大尺寸目标,该假设才近似满足,而在一般情况下由该方法求得的表面电流密度存在误差.将二维导体圆柱、方柱以及三角柱等构型在不同入射频率、极化下的物理光学表面电流密度与精确解或矩量法结果进行了对比.分析表明:横磁波照射时物理光学法除在顶点处有较大误差外,基本能够正确反映出表面电流密度分布情况.横电波情形下物理光学法难以如实反映照射面和阴影面电流的谐振变化,与入射方向平行的面上表面电流密度也有较大误差.  相似文献   

8.
用物理光学法计算理想导体雷达散射截面过程中,需要基于无限大切平面假设计算表面电流密度.只有对表面比较光滑的电大尺寸目标,该假设才近似满足,而在一般情况下由该方法求得的表面电流密度存在误差.将二维导体圆柱、方柱以及三角柱等构型在不同入射频率、极化下的物理光学表面电流密度与精确解或矩量法结果进行了对比.分析表明:横磁波照射时物理光学法除在顶点处有较大误差外,基本能够正确反映出表面电流密度分布情况.横电波情形下物理光学法难以如实反映照射面和阴影面电流的谐振变化,与入射方向平行的面上表面电流密度也有较大误差.  相似文献   

9.
对具有二维周期性结构特点的大尺寸金属渐变体,首先采用矩量法计算渐变体单元的散射场,然后利用天线阵列技术求解整个渐变体的雷达散射截面RCS (Radar Cross Section),既保证一定的计算精度,又解决计算量大以及单元间耦合的难题.推导了相关的数学公式,在线极化平面波入射情况下,分别给出了单个和多个金属渐变角锥电磁散射截面的计算例子,计算结果与商用软件HFSS (High Frequency Structure Simulator)计算得到的结果相吻合,计算用时大大少于HFSS的计算时间,表明介绍的方法在工程运用上是可行的.   相似文献   

10.
利用阵列分析技术和矩量法相结合的方法求解二维周期渐变形状角锥散射体的散射,导出TE波入射时散射场的表达式。计算了金属渐变角锥电磁散射的例子,给出二面角散射体的双站RCS和后向散射随频率变化的规律,以及给出完整散射体对TE波的散射截面。计算结果与商用软件计算所得的结果相吻合,表明该方法在工程运用上是可行的。  相似文献   

11.
提出了求解复杂飞行器目标谐振区散射场的回路线栅法.回路线栅法的基本思想是以其上流动着感应电流的三维线栅回路网格来模拟在入射波激励下的连续金属表面,与以往单独分段的线栅模型不同,本文利用构成闭合回路的线栅构造每一个金属面元,而不采用单独分段线栅电流表示面元的被激电流,从而使得基尔霍夫定律在每个节点处能够得到自动满足.通过分析目标几何特性建立相应的回路线栅电磁模型,并利用共轭梯度快速傅利叶变换法(CGFFT),给出谐振区复杂飞行器目标的雷达散射截面(RCS)结果.  相似文献   

12.
有等离子体层的导体圆柱空间散射特性的分析   总被引:3,自引:0,他引:3  
分别给出平行极化和垂直极化平面波入射到圆柱体时产生的散射场通用公式及其散射参数定义式,对金属圆柱体带有不同厚度的欠密状态等离子体层,过密状态等离子层,有损耗介质层等条件下的RCS计算进行了全面的数值分析,分析了影响双站RCS的各种因素并给出了数值结果,获得一些有用的结论,为进一步研究再入体的散射机理提供有用的参考.  相似文献   

13.
有涂覆层的导体圆柱空间散射特性的数值计算   总被引:1,自引:1,他引:0  
文中根据带有涂覆层的导体圆柱在平面波的照射下的散射场表达式,进行了全面的数值计算,说明了虚宗量的Bessel函数和Hankel函数的计算方法,分别给出了平行极化波和垂直极化波入射时双站RCS的计算曲线,包括不同涂覆层厚度的影响、入射波频率、涂覆层介质的相对介电常数、导磁率变化时双站RCS的变化规律,获得了有参考意义的结果.  相似文献   

14.
GRECO与行波求解低散射目标后向RCS   总被引:1,自引:0,他引:1  
GRECO(Graphical Electromagnetic Computing)技术是目前分析高频区复杂目标雷达散射截面(RCS)最有效方法之一.对低散射截面目标而言,行波效应往往贡献显著,在行波效应较强的某些区域,行波值甚至超过面元与棱边贡献,本文通过GRECO与行波混合法求解低散射目标后向RCS.利用低散射支架为实例,给出与实验结果符合良好的RCS曲线,具有工程实用价值.   相似文献   

15.
基于MLFMA的飞行器锯齿边板散射特性分析   总被引:8,自引:0,他引:8  
为精确求解散射问题,采用混合场积分方程、多层快速多极子算法(MLFMA, Multilevel Fast Multipole Algorithm)和共轭梯度算法的迭代技术,并改进了多极子模式数.金属球双站雷达散射截面(RCS,Radar Cross Section)的算例表明,该方法在保证精度的前提下,降低了内存和计算时间;分析了锯齿边板的电磁散射特性,总结了锯齿边板相对于直边板在不同角域内的RCS减缩特性以及RCS减缩与入射频率变化之间的关系:随着入射频率的增高,RCS减缩效果迅速提高,且垂直极化减缩效果较水平极化减缩效果好.该结论可以用来提高飞行器的隐身性能.   相似文献   

16.
给出了平面磁流体快波穿透圆柱面分层模型的赤道电离层和大气层的理论.平面磁流体快波被分解成柱面波,柱面波在圆柱分层介质中的传播被化为一个两点边值问题,给出了所需统治方程和边界条件.  相似文献   

17.
FDTD(Finite Difference Time Domain)法结合多项式插值逼近和样条函数插值逼近快速计算了三维目标的宽角度RCS(Radar Cross Section).引入插值逼近方法可以节省计算时间.在整个入射角度范围内选定若干个入射角,对不同的入射角,分别用FDTD法计算得到外推面上各点的切向电磁场值,进而得到这些场值随入射角度变化的插值函数,然后用插值函数计算出全入射角度范围内外推面上各点的切向电磁场值,最后通过近远场变换得到宽角度RCS.计算结果表明,在只有少数几个插值节点的情况下该方法就能很好地逼近FDTD法的精确计算结果,节省了计算时间.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号