首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过实验研究了超声振动曲面上液滴碰撞的动力学行为。对边缘飞溅、表面飞溅以及毛细波、空化和子液滴回弹等复杂物理现象的产生机理和条件进行了分析,得到了超声振动曲面上发生边缘飞溅的临界曲线,并发现由于气动力的作用,超声振动曲面上发生边缘飞溅的临界超声振幅要小于平面情况。利用图像处理技术得到了不同条件下超声振动曲面对碰撞液滴的驱离效率以及飞溅液滴的尺寸分布。实验结果表明:碰撞液滴的驱离效率随振动曲面超声振幅的增大而增大,且呈线性增长;在高速碰撞中,碰撞速度几乎不影响超声振动曲面的液滴驱离效率;随着超声振幅的增加,飞溅液滴的平均尺寸增加。通过常温液滴与过冷液滴的碰撞实验对比,发现温度对超声振动曲面上液滴的动态碰撞过程影响较小。在过冷条件下,液滴驱离效率会略低于常温条件下,但仍能够持续有效地将液滴驱离表面,从而抑制冰层的增厚,说明超声振动曲面具有防水防冰的应用潜能。  相似文献   

2.
液滴撞击固体表面的定向反弹在防结冰/起雾、自清洁等工程应用中具有重要意义。混合润湿性表面已被证明是一种有效的液滴操纵方法。本文对液滴撞击构筑有亲水条纹的疏水基底进行数值模拟研究,采用已验证的扩散界面法来捕获界面演化。首先,研究卫星液滴在撞击过程中的形成过程,通过分析液滴的垂直速度和横向速度,明确混合润湿性表面在液滴扩散、收缩和反弹阶段中的作用。然后,系统探究条纹宽度对液滴反弹形式和接触时间的影响,重点关注液膜演化和液滴弹跳过程中的动力学和能量传递机制。所得结果可以指导混合润湿性表面的优化设计和液滴定向回弹的控制。  相似文献   

3.
采用高速摄影与计算机图像识别技术,研究了单个液滴撞击不同厚度、不同弹性模量的聚二甲基硅氧烷(PDMS)样品表面后的动态铺展过程,获得了液滴与柔性材料表面的移动接触线直径随时间的变化规律。实验结果表明:柔性材料在撞击过程中受压变形所导致的固体材料粘性能量耗散与系统的总能量相比很小,不会对液滴的铺展过程产生明显影响;在较低的撞击速度下,柔性材料表面形成的润湿脊所导致的粘弹性能量耗散是系统能量耗散的重要因素,且随着柔性材料弹性模量的减小而增大,因此液滴撞击弹性模量较小的PDMS表面时的最大铺展系数相对较小;当撞击速度增大后,粘弹性能量耗散在总能量耗散中所占的比例降低,液滴铺展过程中的液体粘性能量耗散所占比例逐渐升高,柔性材料弹性模量对液滴铺展行为的影响逐渐降低。  相似文献   

4.
液池内液滴撞击成泡现象广泛存在,具有重要科研价值。利用高速摄像技术,测试了液滴从3~15m高度下落撞击不同深度液池时的液面成泡现象,给出了液池深度和液滴韦伯数We对撞击成泡的影响规律。结果表明:液滴撞击浅液池时,可以在撞击中心处形成1个圆泡,但撞击深液池时,则会先形成环形水泡,进而发展成1或2个圆泡,且成泡位置并不在撞击中心位置;在液滴撞击速度、液池深度、回落二次液滴等因素影响下,液滴撞击成泡现象呈现复杂的概率分布特性。  相似文献   

5.
基于压电驱动器激励振动的机械力学式除冰技术是一种重量小和能耗低的新型除冰技术,用于应对航空结冰威胁问题。其中机械振动引起的界面剪切应力和相应结构振动模态是该除冰技术研究中的两个重要方面。寻找合适的振动模态来产生足够的界面剪切应力以提高除冰效率是研究中的重要内容。薄板的振动模态通常用横向轴线和纵向轴线上的反节点数m和n来描述。本文目的是研究不同结构弯曲振动模态下除冰剪切应力的分布特征,从而为基于机械振动的结冰防护系统(Ice protection system, IPS)的详细设计建立目标振动模态的选择依据。通过理论分析和仿真计算,建立了界面剪切应力与结构振动模态参数之间的关系。采用“冰层-平板-压电陶瓷”的有限元分析模型(Finite element model, FEM),仿真计算了不同振动模态下的应力应变水平,并根据仿真和实验结果分析了除冰剪切力的分布特征。最终给出了基于弯曲振动模态参数m和n的特征来确定除冰模态的选择标准。  相似文献   

6.
为研究液滴撞击低温壁面的动态行为,运用高速阴影法对韦伯数(We)在533~1630之间的单液滴撞击常温壁面(22 ℃)与低温壁面(?30~?10 ℃)进行可视化试验。试验结果表明:液滴以一定速度撞击低温壁面时,会发生即时破碎和冠状破碎,二次液滴飞溅明显;但液滴以相同速度撞击常温壁面时,未出现液滴破碎现象。随着壁面温度的降低,液滴撞壁破碎所需韦伯数减小。在壁面温度为?30 ℃时,液滴撞击铝合金板的破碎临界韦伯数降低至480左右;当We < 480时,即使壁面温度低于?30 ℃,液滴也不会发生撞壁破碎。当液滴撞击常温壁面时,液滴快速铺展,并且韦伯数越大,液滴铺展和回缩的速度越大,液滴的铺展因子越大。该研究可为液滴撞击低温壁面撞壁模型的建立提供参考。  相似文献   

7.
讨论了模态转换型超声电机表面质点椭圆运动的形成,研究了基于定、转子耦合和利用独立耦合器的模态转换型超声电机的原理。通过对具有斜槽的纵扭振动耦合器上观察到的表面质点椭圆运动进行的理论分析,提出了一种利用主结构中的子结构的局部振动获得模态转换的方法,可用于模态转换型超声电机的设计。  相似文献   

8.
超疏水光热防除冰表面作为一种新兴的防除冰手段,在防除冰领域具有巨大的应用潜能。本研究通过数值模拟和物理实验相结合的手段研究了不同微结构超疏水表面的光热防除冰特性。基于有限元模拟,得到了纳米颗粒的粒径、种类、体积分数、涂层厚度及微纳复合结构表面的结构参数对表面光热转化效率和升温效果的影响。另外,考虑了微柱和微锥两种微纳复合结构,数值结果表明微纳复合结构具有更好的光热特性,微锥结构的光热特性最好。同时,详细讨论了微结构尺寸参数,如特征尺度和高宽比,对表面吸收率与光热转化效率的影响。光照升温和融冰试验结果表明制备的超疏水光热表面能够实现高效的光热转化和防除冰功能,最优结构的表面在一个太阳光照条件下的温升可以达到45℃。本研究的研究工作可以为防除冰材料的优化设计提供参考。  相似文献   

9.
在人工结冰条件下,利用合成双射流激励器与电热贴片形成合成热射流激励器,开展合成热射流机翼除冰试验,验证合成热射流机翼除冰方案的可行性,同时分别研究除冰的环境温度和射流出口通道开缝角度对机翼除冰效果的影响。研究表明:合成热射流方案与纯加热方案相比,除冰时间能够减少25.0%~36.4%。合成双射流能够促进热能的扩散,加速机翼表面开缝附近冰的融化,使得合成热射流有较好的除冰效果,且出口通道开缝角度与表面积冰越垂直,加速除冰效果越明显。  相似文献   

10.
重要设备,如飞机机翼、风力涡轮机、太阳能电池板等结冰会引起空气动力学形状变化和重要部件变形,严重威胁运行安全。然而,制造柔性、共形的光热除冰表面仍然具有挑战性。本文采用激光直写技术,设计并制备了多孔疏水的激光诱导石墨烯(Laser induced grapheme, LIG)基光热抗霜除冰表面。采用激光照射聚酰亚胺(Polyimide, PI)薄膜制备LIG薄膜。激光照射后,LIG薄膜呈现多孔结构和高C/O比。由于多孔结构和高C/O比的存在,LIG膜具有疏水性(CA,~123.2°)、高吸收率和良好的光热转化率,因此,LIG薄膜具有光热抗霜除冰能力。本文工作显示了开发柔性、共形的光热抗霜/除冰表面的巨大潜力。  相似文献   

11.
电热除冰的热力耦合特性及其对冰层的影响研究   总被引:1,自引:0,他引:1  
采用计算和实验相结合的方法,初步研究了电热除冰过程中的热力耦合特性及其对冰层的影响.在电加热条件下,耦合外部气动力载荷的作用,采用有限元方法计算了不同热流密度下表面冰层和蒙皮间界面法向和切向应力的分布,比较了加热/不加热条件下界面法向和切向应力分布的差别,研究了冰层最大主应力随热流密度的变化规律.研究发现,电加热条件下,在表面冰层融化前,热力耦合特性将造成冰层内部应力的显著增加,从而 造成冰层局部区域的破裂,加速冰层的破坏.同时,设计的原理性实验结果验证了热力耦合特性对冰层的破坏影响.研究结果对于电热除冰理论和除冰技术的发展有现实意义.  相似文献   

12.
3 m×2 m结冰风洞于2013年建成,近年来该风洞的试验技术研究取得了一系列的进展。首先对风洞概况和相关试验技术进行了介绍,包括总体情况、性能指标、试验能力等,重点阐述了该结冰风洞已形成的云雾场参数校测、冰形特征捕获、热气防冰和电热除冰等试验技术。其次,对发动机、直升机结冰与防除冰、过冷大水滴和冰晶雨雾模拟等结冰风洞试验技术新的发展方向进行了分析和探讨,提出了发展思路。可为结冰风洞建设与试验技术的研究提供参考。  相似文献   

13.
飞机结冰极大威胁飞行安全,严重时导致机毁人亡。适应恶劣寒冷环境的飞机防除冰技术是国际难题,也是中国多型飞机研制必须突破的重大技术瓶颈。本文首次提出一种仿生疏冰雪对象——秦岭箭竹,建立仿秦岭箭竹叶多层不等高微纳结构,揭示了这种独特结构对过冷微小水滴形成弹跳,滚动成冰及滑落的疏冰机制;提出一种基于分层组装的柔性大幅面微纳结构制备方法,实现仿秦岭箭竹叶疏冰结构制备;获得的仿秦岭箭竹叶疏冰表面相较于同材料光滑表面冰粘附强度降低80%,表明秦岭箭竹叶微纳结构具有优异的疏冰效果。结合实际工程应用,研制基于功率密度分区的仿生与电热相结合的疏冰复合蒙皮,据此获得的疏冰复合蒙皮成功完成中小型无人机防除冰功能飞行,并且已成功列装某型号高原型无人机,满足了高寒条件下的有效防除冰飞行要求。仿秦岭箭竹叶疏冰蒙皮也在大型运输机、直升机,以及风力发电、高速列车等领域具有广阔的应用前景。  相似文献   

14.
在对飞机防/除冰方式及其应用与优、缺点介绍的基础上,结合现代飞机发展趋势,提出电脉冲除冰技术是极具发展前途的飞机除冰方式,并对其发展历史、应用情况和发展现状进行论述。通过对电脉冲除冰技术国内外现状的研究可以看出,国外电脉冲除冰技术经过多年发展,已可初步工程应用,而国内的相关研究多为原理性的理论研究,急需开展相关应用性研究,进而掌握电脉冲除冰的关键技术。最后,针对国内研究现状提出了电脉冲除冰技术的难点与挑战以及今后的研究方向。  相似文献   

15.
基于正交实验方法和有限元仿真方法,设计五因素四水平正交实验表,研究了作业速度、覆冰厚度、弓头质量、弓头刚度以及弓头阻尼对除冰率的影响。建立了接触网-覆冰有限元模型和受电弓-接触网耦合有限元模型,并通过对比理论值和仿真值验证了有限元模型的准确性。仿真结果表明:作业速度和弓头质量对接触力和接触线抬升量影响较大,进而影响除冰率,但弓头质量大于17 kg后影响程度趋于平缓。正交实验结果表明:列车运行速度、弓头质量和覆冰厚度是影响除冰率的主要因素,而弓头刚度和阻尼对除冰率影响不显著。这些结果可为提高列车行驶安全性、改善弓网耦合除冰技术提供参考。  相似文献   

16.
利用发展起来的数值算法模拟了微尺度水滴在冷表面上的撞击冻结过程,采用格子玻尔兹曼通量求解器计算流场,应用相场方法追踪水气界面,基于焓模型确定冰水界面。通过与实验对比水滴在表面上撞击冻结过程中的外形,验证了数值方法的准确性与可靠性。本文研究水滴动态冻结过程时考虑了水滴尺度、撞击速度及冷板温度3个因素的影响。结果表明,水滴底部冻结限制了水滴在表面上铺展后的弹跳过程,可能形成帽子状的形态。水滴撞击速度增加,冰层在水滴径向上发展更快,水滴与表面间的传热增强。另外,温度控制着水滴中心的动力学过程,当表面温度更低,水滴可能会在中心出形成凹坑。通过对水滴内部温度分布情况分析可知,热流密度随着离冷表面距离的增加而降低。随着结冰增长,水滴轴线上逐渐降低的温度与冷表面温度呈非线性关系,表面温度越低,由于温差增加,冰层内部的无量纲温度变得越低。  相似文献   

17.
过冷水滴撞击特性计算研究是飞机结冰预测与防除冰系统性能分析的基础,欧拉法是过冷水滴运动及撞击特性计算的常用方法之一,分析欧拉法在计算复杂表面水滴运动撞击时的准确性具有重要意义。以NACA0012翼型、冰风洞风道、S形进气道及三段翼为研究对象,利用欧拉法采用不同网格计算获得了水滴运动及局部水收集系数,结果表明:当水滴运动没有受到上游部件的导流或者遮挡时,欧拉法计算结果具有网格无关性;当水滴运动受到上游部件影响发生轨迹偏转时,欧拉法计算结果具有网格相关性,不同网格计算得到的液态水含量及局部水收集系数不一致,需要进一步考虑水滴运动受到上游效应影响时网格对欧拉法计算结果的影响。  相似文献   

18.
过冷大水滴(Supercooled large droplet,SLD)结冰超出了常规防除冰系统的防护范围,是一种更为严重的结冰情形,极大地影响着飞行安全。在美国联邦航空管理局14 CFR 25.140条款中明确提到为保证飞机在SLD结冰条件下的安全运行,首先且必须要对SLD结冰气象环境进行探测。由于水滴破碎会改变水滴运动轨迹和表面撞击水分布,使水滴撞击极限变小,而水滴飞溅对结冰极限位置影响不大,因此本文通过研究大、小粒径水滴在飞机上收集范围不同的特点,提出一种可以满足SLD结冰适航符合性的结冰探测技术。该结冰探测技术采用常规结冰探测器,根据水滴收集范围将其布置于不同敏感结冰部位,可以实现全剖面飞行的结冰环境探测。  相似文献   

19.
为了探究高韦伯数下气流速度及液滴初始直径对液滴破碎以及Rayleigh-Taylor不稳定波的影响,进行了煤油单液滴在气流中破碎的实验,采用高速摄影技术记录了液滴的破碎过程,应用包含粘性和表面张力的Rayleigh-Taylor不稳定性理论分析了液滴的破碎过程,对Rayleigh-Taylor不稳定波波长与液滴破碎时间进行了理论计算,并与实验结果做了对比研究。结果表明:当We为321左右时,煤油液滴开始呈现灾型破碎模式;气流速度、液滴初始直径对液滴表面的最大增长率Rayleigh-Taylor不稳定波的波长、增长率和临界波长均有影响;Rayleigh-Taylor不稳定性理论在预测最不稳定波长时,结论与实验结果的误差不超过6%;取经验参数M为8.9时,液滴破碎时间理论与实验误差最小。  相似文献   

20.
针对自燃推进剂接触就能着火燃烧的特点,设计实现了高压飞滴及常压挂滴两套单液滴燃烧实验系统,并开展了有机凝胶偏二甲肼(UDMH)液滴在四氧化二氮(NTO)氧化剂环境中着火燃烧的实验研究,深入分析了其着火燃烧特性及NTO氧化剂浓度、温度、压力、对流速度、液滴初始尺寸的影响.结果表明:有机凝胶UDMH液滴表面液体燃料耗尽后会形成弹性胶凝剂膜,促使液滴内部出现沸腾蒸发及非稳态蒸汽喷射,导致燃烧火焰出现剧烈扰动.NTO浓度升高,增大了扩散燃烧火焰范围,加速液滴表面燃料蒸汽分解燃烧,有利于提高燃烧速率.NTO温度越低,着火延迟时间越长,并容易导致熄火.NTO对流速度越大,也会增加着火延迟时间,且更容易形成脱体火焰,使其燃烧速率降低.凝胶液滴尺寸越大,其着火延迟时间受对流速度的影响明显减小.NTO压力升高会抑制燃料蒸汽喷射强度,形成更稳定且更靠近液滴表面的双火焰结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号