首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
根据火箭控制系统闭环模飞的方案, 讨论了平台系统中惯性器件激励电流的计算方法, 其中考虑了地球自转对陀螺的影响。根据工程需要对公式进行了简化  相似文献   

2.
用扭摆测试导弹惯性积的方法   总被引:6,自引:0,他引:6  
吴斌  赵育善  马彩霞 《上海航天》2000,17(2):40-42,,45,
描述了一种通过测量导弹在六个不同位置的转动惯量来计算导弹惯性积,进而计算导弹纵轴与主惯性轴夹角的方法。对长度较长、竖直放置在测试台上很困难的导弹,提出了将导弹纵轴 角度,间接计算纵向转动惯量的计算方法,使得在同一台设备上能测量导弹全部惯性张量。转动惯量通过扭摆法测量,在测量过程中,由于导弹转动速度很慢,可以忽略空气阻力的影响,有较高的测量精度。  相似文献   

3.
高精度惯性平台连续自标定自对准技术   总被引:8,自引:2,他引:8  
提出了一种新的惯导误差系数标定方法——连续自标定自对准方法。利用外部参考力矩驱动平台按照一定角速度旋转,在平台加矩角速度、地球自转角速度和重力加速度的影响下,惯导平台的加速度表输出包含陀螺误差系数、加速度表误差系数、平台对准误差以及陀螺和加速度表的安装误差等全部误差信息,并由此得到平台失准角动态方程与加速度表的输出方程。在设计的平台连续旋转轨迹下,使用迭代Kalman滤波获得了全部平台误差系数的精确估计。与传统的多位置翻滚标定方法相比,该方法标定时间短,标定精度高,系统误差参数估值具有良好的收敛性。  相似文献   

4.
速率捷联系统包括惯性组合和弹上计算机两大部份,惯性组合由两个三自由度的速率陀螺和三个加速度表组成,均与飞行器相固连。速率陀螺的输出与飞行器的角速度成正比。速率捷联系统与平台系统一样,用来建立惯性座标系,作为导航计算的基准。要建立惯性座标系,需要给陀螺测量的角速度赋以初值。而发射前飞行器受风的影响产生随机摆动,如何求得飞行器在某瞬间的初始姿态角,就是本文要解决的问题。  相似文献   

5.
陀螺稳定平台漂移误差参数的辨识方法研究   总被引:3,自引:0,他引:3  
胡云中 《航天控制》2004,22(2):10-12
给出了一种平台工作在惯性稳定状态下的静态多位置测漂方案 ,建立了包含陀螺漂移、地球自转因素在内的平台漂移数学模型和系统状态方程 ,解决了三轴开路状态下的耦合问题。取框架角传感器的输出作为观测量 ,利用广义Kalman滤波器对含有噪声的测量数据进行处理 ,将参数辨识问题转化为状态估计 ,仿真结果表明 ,此方法可以获得较好的辨识效果  相似文献   

6.
讨论了导弹捷联惯性测量系统的数据融合设计方案,并结合卡尔曼滤波法对冗余数据的融合进行了研究,证明了数据融合技术在提高导弹捷联惯性测量系统精度方面的有效性。  相似文献   

7.
针对采用捷联稳定方案的旋转弹,为实现用数字计算方法提取比例导引所需的弹目惯性视线角速率信号,对一种基于卡尔曼滤波的成像旋转弹跟踪系统设计进行了研究。将目标的随机加速机动视作修正的瑞利-马尔科夫过程,与视线运动方程联立,建立了机动目标跟踪系统数学模型。由稳定平台的惯性测量元件实现对弹体姿态角的计算,另通过大视场捕获目标,获取目标相对光轴的误差角,综合两者可得目标相对惯性空间的视线角,对视线角进行数字微分获得视线角速度。其中,为避免放大测量噪声,采用自适应卡尔曼滤波法估计视线角速度。闭环仿真结果表明:与低通滤波算法相比,自适应卡尔曼滤波算法的精度高,对测量噪声抑制好,可获得比例导引所需的惯性视线角速率和跟踪角误差的滤波值,从而实现高精度控制。  相似文献   

8.
楼朝飞  张锐 《航天控制》2008,26(2):41-46
为了提高自旋导弹控制的性能,采用自旋导弹的惯测组合来扩充实时测量导弹在飞行过程中运动状态的能力。由于目前速率陀螺的量程和精度都不能满足测量自旋导弹大旋转速度的需求,因此在惯测组合中用地磁场传感器代替速率陀螺来测量绕弹体纵轴的角速度。本文主要利用地磁场传感器组合对自旋导弹滚转角、滚转周期的确定原理及工程可实现性进行研究,给出了采用敏感轴分别在弹体坐标系Oy1和Oz1方向的2个地磁场传感器实现自旋角速度测量的结构设计,分析了产生奇异的条件和地磁场传感器惯测组合的可行性,推导了利用地磁场传感器实现滚动角和滚动周期测量的计算公式和计算流程,对所研究的结果通过了实物试验验证。  相似文献   

9.
郑志超  王振华 《宇航学报》2013,34(4):516-522
针对双轴旋转式惯导系统中不能自动补偿标度因数误差与地球自转耦合误差的问题,提出了一种改进的转位方法。该方法不增加转轴数目,通过补偿地球自转在转轴平面的投影抑制耦合误差项,计算结果表明该方法适用于激光陀螺惯导系统和光纤陀螺惯导系统。利用改进的转位方法对双轴旋转式惯导系统进行仿真,仿真结果验证了该方法的可行性。研究结果为双轴旋转式惯导系统的工程设计和改进提供了一定的理论支持。  相似文献   

10.
针对框架式惯性平台系统能够绕框架轴自主转动的特点,提出一种基于粗对准+精对准的静基座下惯性平台快速初始自对准方法。该方法首先利用重力矢量随地球自转的特点,快速实现惯性平台的粗对准。在此基础上,通过设计加矩方案令平台绕天向轴旋转并采用Kalman滤波技术,完成惯性平台的精对准。仿真算例表明,该方法能够在720 s内实现惯性平台水平姿态角小于5"(1σ),方位姿态角小于12"(1σ)的自对准精度,有效地提高了系统的响应速度和导航精度。  相似文献   

11.
针对无纬度条件下SINS初始对准问题,提出了一种基于地轴矢量解算的对准方法。在静止基座下,利用陀螺仪敏感地轴矢量,直接建立导航系轴向矢量在载体系的正交投影,解析式确定姿态矩阵;晃动基座条件下,根据惯性系重力矢量观测,构建以地轴矢量为旋转轴的两组等角旋转矢量序列,利用QUEST算法求解旋转四元数实现对地轴矢量的优化解算,并以此建立导航系轴向矢量的载体惯性系投影,最后利用陀螺跟踪载体系相对惯性系的变化,确定载体系相对导航系的姿态关系。静止基座解算实验表明直接解析式对准与传统的解析式对准精度相当,但解算效率得到了提高;晃动基座仿真与船载实验均表明基于四元数的地轴矢量优化解算在精度上要优于三矢量几何解算方法,引入低通滤波环节后,对准精度进一步提高。  相似文献   

12.
The convection of heat-generating fluid in a rotating horizontal cylinder is experimentally investigated. The threshold of convection excitation, the structure of convective flows and the heat transfer in the cylinder depending on the heat release capacity, liquid viscosity and aspect ratio of the cavity are studied. It is found that the average convection is excited by the thermovibrational mechanism —the gravity force, rotating in the cavity frame, produces the oscillations of non-isothermal fluid relative to the wall, which in turn result in excitation of mean convective flows. It is shown that the structure of convective flows depends on the dimensionless velocity of rotation. At relatively low rotation velocity the convection develops in the form of a periodic system of vortices regularly distributed along the cylinder axis. The threshold of excitation (critical value of vibration parameter) of three-dimensional vortex structures grows with rotation velocity. Above some definite rotation velocity the convection develops as two-dimensional rolls parallel to the axis of rotation. The threshold of two-dimensional structures excitation does not depend on the rotation velocity. Besides the structure of thermal convective flows the analysis of the relatively weak currents generated by the inertial waves below the threshold of convection is performed.  相似文献   

13.
捷联惯性导航算法一般是基于惯性器件输出为角速率、比力或角增量、速度增量进行设计的,不能直接应用于陀螺输出为角速率、加速度计输出为速度增量的捷联惯性导航系统。为了解决此问题和满足精度要求,重新设计了一套捷联惯性导航算法:姿态更新算法采用了经典的四阶龙格-库塔法,推导出了一种新的速度更新算法,该算法可以有效补偿速度计算中的划桨效应误差。仿真结果表明,该种速度更新算法仿真速度快、精度高,具有一定的工程实用价值。  相似文献   

14.
捷联惯导加速度计尺寸效应误差建模及其标定   总被引:1,自引:0,他引:1  
高动态条件下,加速度计(简称加计)的尺寸效应将成为捷联惯导系统精确导航的重要误差源。这个误差源于加计组合中三个加计振动中心(有效的加速度测量点)的不重合。从几何角度对加计尺寸效应误差进行了建模。设计了三类基于精密三轴速率转台的加计尺寸标定方案,即匀角速度旋转、匀角加速度旋转和正弦角加速度旋转方案。以旋转过程中捷联惯导系统的速度输出作为量测,利用Kalman滤波器可以实现对加计尺寸系数的有效估计。利用分段定常系统可观性分析方法研究表明,三类旋转标定机动均能使系统状态完全可观测。仿真结果证明了三类标定方案的有效性,而以匀角速度旋转方案估计过程最平稳,以正弦角加速度旋转方案估计精度最高。  相似文献   

15.
利用Kane法多体动力学基本理论并考虑根铰间隙影响因素,建立适用于空间柔性太阳电池阵的多框架展开机构多体系统动力学模型,对框架展开机构的展开方式和展开过程进行仿真分析,获得了机构组成部件在展开过程中的几何位置、速度、加速度等动力学特性,分析了框架展开机构各个关节点运动特性、铰链间隙与外部驱动力的相互作用规律。结果表明:合理控制框架展开机构各运动部件的驱动力矩是保证框架按照确定规律展开的必要条件;根铰间隙对太阳电池阵框架展开机构角加速度影响较为明显,进而影响到展开框架展开过程的稳定性,对转角和角速度几乎没有影响;在进行空间太阳电池阵框架展开机构设计时应严格控制铰链轴间隙,并通过动力学仿真校核间隙对太阳电池阵展开过程的影响;研究结果为空间柔性太阳电池阵多模块框架展开机构设计提供指导。  相似文献   

16.
针对航天器在轨服务任务的地面零重力模拟需求,研究基于工业机器人的零重力运动模拟技术。建立基于BP神经网络的受力感知预测模型,该模型采用机器人末端姿态、加速度、角速度和角加速度作为输入层参数,采用机器人末端六维力传感器数据作为输出层参数,实现了对机器人末端负载的高精度动态受力感知。设计正交试验方法确定机器人的运动路径点进行样本数据采集,实现了受力感知预测模型对机器人全工作空间的覆盖。进一步,基于对机器人末端负载的受力感知数据,应用动力学理论计算负载在失重状态下的运动速度,并控制机器人执行相应的运动,实现了对机器人末端负载的零重力运动模拟。  相似文献   

17.
基于PID控制的主动磁轴承-飞轮转子系统运动稳定性研究   总被引:11,自引:4,他引:11  
董淑成  房建成  俞文伯 《宇航学报》2005,26(3):296-300,306
磁悬浮支承应用于控制力矩陀螺具有很多优点,但是飞轮转子在高转速下表现出的陀螺效应是影响系统稳定性的主要因素。现研究了由于陀螺效应产生的章动和进动造成系统失稳的根本原因,并对控制系统提出改进方案。为研究方便,提出了相位分析的方法进行PID控制系统分析。研究结果表明,章动失稳的主要原因是系统的相位滞后引起,进动失稳主要因为积分控制项对系统负阻尼作用引起,同时,研究表明积分控制对系统章动稳定性影响很小。  相似文献   

18.
在跟踪系统中 ,利用目标单轴向运动加速度的非零均值相关模型可以构造目标的运动学方程 ,用接收机角误差信号和天线座测角传感器信号重构目标位置量测的方法 ,可以组成目标运动的量测方程 ,从而构造关于目标位置、速度、加速度的状态估计器。利用目标机动加速度的当前统计模型 ,则实现了该估计器加速度的均值和方差的自适应滤波估计运算。针对状态方程为上三角阵的特点 ,采用一次一个量测的处理方法 ,对误差协方差阵的传播和更新实现全上三角矩阵因子分解 ,保证了估计器实时运算的数字稳定性。上述技术的综合应用 ,用卡尔曼估计器实现了单轴角跟踪系统的前馈复合控制  相似文献   

19.
对飞航导弹的变结构过载控制进行了研究,提出了以过载、角加速度和角速度构造滑模面的工程易实现的方案。同时,应用根轨迹方法,进行了控制参数的优化设计。最后,针对两类典型飞航导弹模型,将"过载 角加速度 角速度"方案与"过载 角加速度"方案进行仿真比较。结果表明"过载 角加速度 角速度"方案适用范围更广、控制效果更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号