首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microgravity measurement assembly (MMA) is a precision measurement facility for ground and on-orbit disturbance accelerations on board Spacelab, being currently under development by MBB/ERNO under DFVLR contract. MMA is using a new generation of micromechanical acceleration detectors developed by CSEM under ESTEC contract. Small dimensions of the triaxial sensor packages allow for installation very close to scientific experiments; mass is significantly reduced compared to conventional systems. Six or more of these mini-sensor packages are installed at the most g-sensitive experiments of Spacelab Module Missions. Acceleration and housekeeping data are processed in real time by a dedicated microcomputer and transmitted to the ground. Thus, for the first time, synchronized and comparable precision acceleration data are available in real time on ground for on-line judgement of the microgravity environment desired for experiment success, offering the possibility, for example of experiment repetition in case of excessive g-disturbances. Furthermore, MMA allows for immediate feedback to the crew concerning the microgravity effects of their dynamic behavior, with the aim of crew training towards lower disturbances. An additional mobile sensor package can be installed at vibration sources, e.g. pumps, centrifuges etc. or any arbitrary location inside the Spacelab Module. An impact hammer can be used together with MMA in order to measure in-flight structural transfer functions. The MMA on-board system and ground station and its planned utilization for the German Spacelab Mission D-2 is described.  相似文献   

2.
The goal of the Kinelite Project is to develop a space qualified motion analysis system to be used in space by the scientific community, mainly to support neuroscience protocols. The measurement principle of the Kinelite is to determine, by triangulation mean, the 3D position of small, lightweight, reflective markers positioned at the different points of interest. The scene is illuminated by Infra Red flashes and the reflected light is acquired by up to 8 precalibrated and synchronized CCD cameras. The main characteristics of the system are: Camera field of view: 45 degrees; Number of cameras: 2 to 8; Acquisition frequency: 25, 50, 100, or 200 Hz; CCD format: 256 x 256; Number of markers: up to 64; 3D accuracy: 2mm; Main dimensions: 45 cm x 45 cm x 30 cm; Mass: 23 kg; Power consumption: less than 200 W. The Kinelite will first fly aboard the NASA Spacelab; it will be used, during the NEUROLAB mission (4/98), to support the "Frames of References and Internal Models" (Principal Investigator: Pr. A. Berthoz, Co Investigators: J. McIntyre, F. Lacquaniti).  相似文献   

3.
Based on the results of studies carried out by ESA several possibilities are discussed to achieve mission cost reductions for large Spacelab instrument facilities as compared to their flight on several 7-day duration Spacelab missions. As an example three scientific telescope facilities are selected (LIRTS, EXSPOS, GRIST) which are defined to a Phase A level.Three new mission modes are considered:
• —Shuttle attached Spacelab mission mode with extended flight duration (up to 30 days) for which the application of planned capability extensions and new elements of the STS/Spacelab (e.g. Short Spacelab Pallets, Power Extension Package) are investigated.
• —Shuttle deployed mission mode, for which the telescope, accommodated on a Spacelab pallet, is docked to the Power Module, a new element of the Space Transportation System under study by NASA.
• —Free-flying mission mode, for which Shuttle launched dedicated missions of the facilities are considered, assuming varying degrees of autonomy with respect to supporting services of the Shuttle.
Reduction of costs have been considered on the levels of single mission cost and total programme cost. Fundamentally the charges for the instrument can be reduced by constraining the mass/volume factors with respect to the Shuttle capability. However, the instrument as part of a payload is only viable if an acceptable resource sharing including observation time can be achieved. Any single instrument will require several mission opportunities or one mission which achieves a similar or longer total observation programme.Based on an identification of instrument modifications of the Phase A baseline designs to favour cost reductions and on a derivation of technical requirements, constraints and finally budgetary cost comparisons an attempt is made to assess the advantages and disadvantages of the different mission modes.The favoured option for GRIST is a 2–3 weeks sortie mission followed after refurbishment by a longer Power Module docked mission. For LIRTS and EXSPOS the free-flying pallet modes are very attractive in terms of the longer durations achieved and in terms of cost per unit operating time.  相似文献   

4.
E Schoen  F Seifert 《Acta Astronautica》1988,17(11-12):1155-1160
Research on the structure of molecules by X-ray diffraction analysis requires large single crystals. However, the dynamic behavior of proteins caused by their high molecular weight prevents the growth of large single crystals if this process is disturbed by thermal convection. For example, protein single crystals grown under terrestrial (1 g) conditions are limited to dimensions in the order of 0.1 mm, whereas the size of crystals, grown under (quasi) space conditions has been 5 times larger (pilot experiment CRYOSTAT, Spacelab). Under EURECA conditions (e.g. no microgravity disturbances), the result in regularity of crystal growth and size is expected to be much better. In this paper an overview is given of the protein crystallization facility which includes Experiment-, Service- and Secondary Cooling Module, and its interfaces to the EURECA Carrier. At the end, there will be presented a short mission profile concerning cooling-, power- and data exchange requirements.  相似文献   

5.
6.
This paper generalizes the results of measuring the residual accelerations arising when investigations in space materials science are carried out onboard the unmanned Fotonspacecraft. The levels of vibroaccelerations are analyzed in the frequency band of 1–500 Hz for the technological devices UZ01, UZ04, and POLIZON, developed by the Federal Unitary State Enterprise Barmin Design Bureau of General Machine Building (V.P. Barmin KBOM). The levels of accelerations are estimated in the frequency band of 0–1 Hz in the zone of technological operations of these facilities. The basic sources of vibroaccelerations acting upon the frames of devices are determined in the capsule zone, where technological processes of producing new materials take place. In the frequency band of 1–500 Hz the vibroaccelerations are shown to be generated by the operation of Fotonspacecraft units and a drive of capsule translation during the technological process. On the capsule frame they reach the values of (1–3) × 10–3 g. The level of linear accelerations in the infralow-frequency band is determined by rotational motions of the Fotonspacecraft. It depends on the device location with respect to the spacecraft center of mass and does not exceed (1–7) × 10–6 gin the steady-state regime in the zone of technological activity.  相似文献   

7.
The use of electrostatic forces in the design of a positioning system and acoustic forces in the implementation of a mixing system for material science experiments on Spacelab are described. The electrostatic positioning of samples is described with special reference to its advantages and disadvantages with regard to other positioning methods. The design of such a positioner is described including the considerations relating to the processing of both high and low vapour pressure materials in a positioner compatible with both the isothermal heating facility (IHF) and the mirror heating facility (MHF) of Spacelab under microgravity (10?4–10?3 g) conditions. The application of acoustic and ultrasonic forces to the problem of sample mixing in material science experiments is explained. The design of a mixer compatible with existing furnace hardware for Spacelab and capable of effectively mixing samples at temperatures up to 1200°C is described. Tests of the mixer show that a 15 μm displacement adequate for good mixing can be achieved with a d.c. power input of 23 W and a conversion efficiency of 70%. Tests on alumina particles and carbon fibres in various alloy matrices show that complete wetting can be achieved.  相似文献   

8.
Detector packages consisting of thermoluminescence detectors (TLDs), nuclear emulsions and plastic nuclear track detectors were exposed in different sections of the MIR space station, inside the Spacelab during the IML1 mission, and inside Spacelab module and tunnel during the D2 mission. This report concentrates on total dose measurements with TLDs during these mission. The results are discussed and compared to results of former missions and to calculations. Finally, dose equivalents and mean quality factors for each mission are presented which are derived from the TLD results and results obtained from the other detector systems. Dose equivalents range between 200 μSvd−1 and 700 μSvd−1.  相似文献   

9.
The first part of the paper is devoted to the presentation of the Spacelab concepts, for which detailed design studies are at present being carried out by ESRO. The second part concentrates on the utilization of the Spacelab for the various fields of science, namely: (1) Atmospheric and space plasma physics, (2) Astronomy and astrophysics, (3) Material science and (4) Life sciences. The advantages of using the Spacelab for observations in these fields as compared to conventional automated satellites are highlighted.  相似文献   

10.
Jeongrae Kim  Seung Woo Lee   《Acta Astronautica》2009,65(11-12):1571-1581
A dual one-way ranging (DOWR) system provides very high accuracy range measurements between two satellites. The GRACE satellite mission implements the DOWR, called KBR (K-band ranging), to measure very small inter-satellite range change in order to map the Earth gravity field. The flight performance of the KBR is analyzed by using a hybrid software simulator that incorporates actual satellite orbit data into a comprehensive KBR simulator, which was earlier used for computing the GRACE baseline accuracy. Three types of experiments were performed. First is the comparison of the flight data with the simulated data in spectral domain. Second is the comparison of double differenced noise level. Third is the comparison of the range-rate difference with GPS clock estimates. The analysis shows a good agreement with the simulation model except some excessive high frequency noise, e.g. 10−4 m/√Hz at 0.1 Hz. The range-rate difference shows 0.003 cyc/s discrepancy with the clock estimates. These analyses are helpful to refine the DOWR simulation model and can be benefit to future DOWR instrument development.  相似文献   

11.
Levtov  V. L.  Romanov  V. V.  Babkin  E. V.  Ivanov  A. I.  Stazhkov  V. M.  Sazonov  V. V. 《Cosmic Research》2004,42(2):165-177
The results of processing the data of measurements of microaccelerations, carried out onboard the Mir orbital station using the Russian VM-09 system of accelerometers, are described. The system was developed by the Composite Research-Production Association. The sensitivity of this system was 10–4 m/s2; its frequency band had limits from a few tenths of a hertz up to 100 Hz. The measurements were carried out in the real-time mode of data transmission to the Earth, when the orbital station flew over the telemetry data receiving point. The instrument's sampling rate was 200 measurements per second, and the length of a continuous run of measurements did not exceed 10 min. The following problems are considered in the paper: (1) isolation of cyclic trends from the measurement data; (2) estimation of spectral density of the data component with a continuous spectrum; and (3) low-frequency filtration of the measurement data  相似文献   

12.
SDEEM2015空间碎片环境工程模型   总被引:1,自引:0,他引:1  
文章介绍了哈尔滨工业大学空间碎片高速撞击研究中心"十二五"期间发布的空间碎片环境工程模型(SDEEM 2015)。该模型可实现LEO空间碎片环境描述,空间碎片撞击风险评估以及地基探测结果仿真,还可输出LEO航天器不同轨道位置处空间碎片撞击通量随撞击方位角、撞击速度及碎片尺寸的分布规律,地基探测设备探测区域内空间碎片空间密度及通量的分布情况等信息。SDEEM 2015适用轨道高度范围为200~2000 km,时间范围为1959年—2050年,所考虑的空间碎片来源包括解体碎片、Na K液滴、固体火箭发动机喷射物、溅射物和剥落物。  相似文献   

13.
The radio wave propagation in the solar-wind plasma was investigated before and after Mars-2, Mars-7 and Venera-10's superior conjunction. It was found that the moving turbulent solar-wind plasma produced the amplitude and frequency fluctuations and the spectral broadening of monochromatic radio waves. When the Sun-Earth-spacecraft angle decreases from 6° to (0.6) the bandwidth of spectral broadening increases from (0.3) Hz to 300 Hz. The region of 2.5–4° is specific since the bandwidth of spectral broadening is independent of Sun-Earth-spacecraft angle. The spectrum of frequency fluctuations could be represented by a power law with a spectral index of 0.7 ± 0.2. The temporal frequency spectra of the amplitude have two distinct regions. In the low-frequency region the spectral density is approximately constant. The high-frequency portion of the amplitude spectrum follows the power law with a spectral index of 2.8 ± 0.4. The turbulence characteristics of a solar-wind plasma are determined from the experimental data obtained. The three-dimensional wave-number spectrum of irregularities is found to be close to the Kolmogorov-Oboukhov spectrum.The solar-wind density fluctuations decline with heliocentric distance very steeply, but in the distance interval of 7 × 106 – 12 × 106 km, there is a region of enhanced turbulence which could be caused by shock waves.  相似文献   

14.
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ~100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ~10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ~7% and brightness temperature errors of less than 1?K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared. Key Words: Astrobiology-Extrasolar terrestrial planets-Habitability-Planetary science-Radiative transfer. Astrobiology 11, 393-408.  相似文献   

15.
This paper reviews shortly the results obtained by a preliminary call for experiment proposals for future Spacelab flights issued by the European Space Agency in April 1978. The results of this call indicate clearly the trend towards experiments performing studies on the state and the evolution of fluid media. The instrumentation used are mainly multipurpose instruments (furnaces, process chambers) already under development for the first Spacelab flight and new equipment currently under study.  相似文献   

16.
17.
卫星肼瓶系统减振优化设计   总被引:5,自引:0,他引:5  
杨德庆  李应典  戴浪涛 《宇航学报》2005,26(6):804-807,827
由于布局和安装条件的限制,某卫星肼瓶支架采用了“十”字型截面设计,这导致在发射过程中某方向肼瓶振动幅度过大,发生较大变形甚至断裂破坏。为减小肼瓶系统的过度振动,采用结构优化方法进行了减振动力学设计。考虑以下方案:1)固有频率约束下,以肼瓶系统重量为目标函数的尺寸优化;2)频率响应约束下,以肼瓶系统重量为目标函数的尺寸优化;3)以频率响应极小化为目标函数的肼瓶系统尺寸优化;4)频率响应约束下阻尼材料拓扑布局优化,以肼瓶系统重量为目标函数。对优化模型1)~3)进行直接线性化处理,采用序列二次规划方法求解。在阻尼材料拓扑布局优化中,采用了作者提出的基于阻尼拓扑敏度综合评价的阻尼材料拓扑优化准则。综合比较上述方案优化效果,阻尼拓扑布局优化设计的减振效果是最佳的。文中对动力响应优化设计问题的优化模型选取也进行了探讨。  相似文献   

18.
A Cogoli 《Acta Astronautica》1981,8(9-10):995-1002
This paper gives a summary of the principal hematological and immunological changes observed in crews after space flight. Reduction of red blood cell mass (2-21%) and of hemoglobin mass (12-33%) is generally observed after the US and Soviet space missions. The changes are accompanied with a loss of plasma volume (4-16%). Erythrocyte and hemoglobin concentrations in the blood remain constant, suggesting that the changes are driven by a feed-back mechanism. Immunological changes consist mainly of reduced T-lymphocyte reactivity. The results of the 96-day and 140-day Salyut-6 missions suggest that the adaptation of the immune system to spaceflight occurs in two stages: the first takes place during the first 2-3 months in space, the second follows and consists of further weakening of the immune response. Our experiments with human lymphocytes in vitro indicate that high-g enhance, whereas low-g depress lymphocyte activity. Finally, our investigations to be performed on Spacelab are described.  相似文献   

19.
《Acta Astronautica》2010,66(11-12):1571-1581
A dual one-way ranging (DOWR) system provides very high accuracy range measurements between two satellites. The GRACE satellite mission implements the DOWR, called KBR (K-band ranging), to measure very small inter-satellite range change in order to map the Earth gravity field. The flight performance of the KBR is analyzed by using a hybrid software simulator that incorporates actual satellite orbit data into a comprehensive KBR simulator, which was earlier used for computing the GRACE baseline accuracy. Three types of experiments were performed. First is the comparison of the flight data with the simulated data in spectral domain. Second is the comparison of double differenced noise level. Third is the comparison of the range-rate difference with GPS clock estimates. The analysis shows a good agreement with the simulation model except some excessive high frequency noise, e.g. 10−4 m/√Hz at 0.1 Hz. The range-rate difference shows 0.003 cyc/s discrepancy with the clock estimates. These analyses are helpful to refine the DOWR simulation model and can be benefit to future DOWR instrument development.  相似文献   

20.
Coupled radiative-convective/photochemical modeling was performed for Earth-like planets orbiting different types of stars (the Sun as a G2V, an F2V, and a K2V star). O(2) concentrations between 1 and 10(-5) times the present atmospheric level (PAL) were simulated. The results were used to calculate visible/near-IR and thermal-IR spectra, along with surface UV fluxes and relative dose rates for erythema and DNA damage. For the spectral resolution and sensitivity currently planned for the first generation of terrestrial planet detection and characterization missions, we find that O(2) should be observable remotely in the visible for atmospheres containing at least 10(-2) PAL of O(2). O(3) should be visible in the thermal-IR for atmospheres containing at least 10(-3) PAL of O(2). CH(4) is not expected to be observable in 1 PAL O(2) atmospheres like that of modern Earth, but it might be observable at thermal-IR wavelengths in "mid-Proterozoic-type" atmospheres containing approximately 10(-1) PAL of O(2). Thus, the simultaneous detection of both O(3) and CH(4) - considered to be a reliable indication of life - is within the realm of possibility. High-O(2) planets orbiting K2V and F2V stars are both better protected from surface UV radiation than is modern Earth. For the F2V case the high intrinsic UV luminosity of the star is more than offset by the much thicker ozone layer. At O(2) levels below approximately 10(-2) PAL, planets around all three types of stars are subject to high surface UV fluxes, with the F2V planet exhibiting the most biologically dangerous radiation environment. Thus, while advanced life is theoretically possible on high-O(2) planets around F stars, it is not obvious that it would evolve as it did on Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号