首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
在大功率磁悬挂系统中,电磁铁电流必须采用开关频率较高的大功率斩波器来调节。本文介绍一个用于磁悬挂系统的大功率晶体管斩波器,它的工作电源电压为200V,输出电流为60A,斩波频率为2KHZ,试验负载从阻性到感性,电感量达2.5H。该斩波器在一个单自由大功率磁悬浮试验装置中完成了磁悬持控制试验。该斩波器由不对称半桥、开关辅助网络、最优基极驱动电路UAA4002、一次脉冲源MC34060及电流反馈环等部  相似文献   

2.
刘凯  徐杰  徐敦煌 《航空动力学报》2018,45(12):66-73, 96
采用常导磁悬浮技术来解决传统高速滑橇系统中滑橇磨损严重、橇体振荡剧烈等问题。阐述了一套以浮重比为优化目标、纯电励磁与混合励磁式通用的常导悬浮电磁铁的设计流程,建立了悬浮电磁铁的等效磁路模型,并根据悬浮系统的设计输入要求完成了纯电励磁和混合励磁式悬浮电磁铁的初步设计;在此基础上,借助Ansoft有限元仿真软件,完成了两种悬浮电磁铁结构的优化。对比分析两者的设计参数,结果表明:在铁心饱和磁密为1.8 T的限制条件下,电磁铁的磁极截面为正方形时,其浮重比最高;对于混合励磁式电磁铁而言,永磁体的加入大幅减小了电磁铁的体积与自重,显著提高了电磁铁的浮重比,能够增加系统的有效载荷,且降低系统的能耗。  相似文献   

3.
 本文在文献〔1〕的基础上采用国产新型磁敏元件——磁敏二极管互补对和磁敏三极管,做成四种新的磁敏固态传感器:(1)单磁敏三极管传感器;(2)磁敏二极管互补对传感器;(3)磁敏二极管与磁敏三极管组合传感器;(4)双磁敏二极管对的桥式传感器。文中示出四种传感器的实用电路图。同时,对四种性能的传感器都进行了性能测试和分析比较。这四种传感器在多用途、通用性和低速性能几方面都优于文献〔4~7〕中介绍的传感器。  相似文献   

4.
风洞磁悬挂天平控制问题研究   总被引:5,自引:0,他引:5  
风洞磁悬挂天平将为风洞试验提供新的途径,本文首先简单介绍了磁悬挂天平的基本原理,然后详细研究了其控制问题,最后讨论了与控制有关的有待进一步研究的一些问题。  相似文献   

5.
现有的磁航向测量系统体积、重量、功耗偏大,并且调试、误差补偿算法复杂、整体费用偏高,针对这些问题,设计了一个在小角度俯仰、滚转情况下的小型磁航向测量系统.该系统采用带DSP指令的32位高速处理芯片AVR32 UC3B0256、新型倾角传感器SCA100T以及磁阻传感器HMC 1022构成数字化解算平台,实现了误差补偿.实验数据显示,在水平状态下,磁航向测量值最大误差为±1.4;当俯仰角低于30°或滚转角低于35°时,随着角度的增加,磁航向输出误差变化不大,最大误差分别为3.7°和2.8°;当俯仰角超过30°或滚转角超过35°时,磁航向输出误差会急速增大.结果表明,该系统在小角度俯仰、滚转情况下具有较准确的磁航向角解算能力.  相似文献   

6.
价格低廉的磁和红外传感器能为管制员提供一种在地面上跟踪飞机和车辆的新的辅助设备,有助于防止地面碰撞事故。 霍尼韦尔公司技术中心最近按FAA的合同研制了一种二重红外/磁传感器。在滑行道和跑道边沿的照明灯柱上加装传感器后,便在机场上设置了数百个小型短距无源系统。由此得到的信息可给出机场上飞机及车辆位置的精确数据,可帮助装有地面探测雷达(如 ASDE-3)的机场实现地面交通自动化管制。 成本低是这种二重传感器为用户所接受的关键,对无力安装地面监视雷达的小型机场很有用。类似的红外传感器的售价不到30美元。低价的磁传感器为目前正进入批生产的制在  相似文献   

7.
热处理工艺对超级纯铁磁性的影响工程纯铁可以用来制造各种电磁铁的磁芯、极靴、磁屏蔽,制造继电器的铁芯或磁路零件,也用于制造测量仪表中的磁路零件和电话听筒的震动膜。纯铁按性能差异又可分为普通级、高级、特级和超级纯铁。航天系统对磁路的要求很高,多采用无磁时...  相似文献   

8.
以改进电压模型转子磁链为基础,构建了无轴承异步电机转子磁链定向无速度传感器矢量控制系统。MATLAB/Simulink仿真结果表明:与传统方法相比,所提出的改进电压模型转子磁链提高了转子磁链的观测精度;同时,基于无轴承异步电机转子磁链定向无速度传感器矢量控制系统,在空载调速和加载情况下,辨识转速和实测转速具有很好的一致性,电机能够稳定悬浮运行,充分验证了所提方案的有效性。  相似文献   

9.
为了排除地面共振试验过程中一些附加因素的影响,提高试验结果的准确性,通过建立数值仿真模型,分析了模型悬挂、传感器、激振杆等因素对地面共振试验结果的影响。结果表明:悬挂刚度越大,对模型固有振动特性的影响越显著;传感器附加质量主要影响舵面旋转频率,传感器布置越多,实测频率越低;激振杆在某些模态测试时会产生附加刚度的影响,从而提高实测频率。  相似文献   

10.
针对电动汽车机械式传感器在复杂工作环境下易失效的问题,将基于模型参考自适应(MRAS)的无速度传感器技术应用于电动汽车中。针对传统MRAS无速度传感器控制存在的转子位置估计相位延迟较大、转速估计误差较大等问题,将模型预测控制算法应用到MRAS中。参考模型选用永磁同步电机(PMSM)电流磁链方程,可调模型选取电压磁链方程,代价函数是磁链的差值,待估计参数选择转子位置。与传统MRAS无速度传感器控制算法相比,转速、转子位置估计结果更加精确,估计误差较小,动态性能和稳态性能优良。通过仿真和试验验证了算法的可行性和有效性。  相似文献   

11.
环形磁铁空间磁场的解析计算与仿真   总被引:1,自引:0,他引:1  
从永磁体的磁荷模型出发,运用标量磁位法、广义二项式定理、矢量叠加原理等建立了环形磁铁在磁体外部空间磁场分布的解析表达式,并在MATLAB仿真软件中进行了计算。利用三维数字式特斯拉计实际测量了两种规格的永磁体的磁场分布,利用Ansoft Maxwell电磁场分析软件建立了两种永磁体在磁体外部空间的磁场分布,通过对比解析计算结果、实际测量结果和Ansoft Maxwell仿真结果发现解析表达式很好地反映了永磁环空间磁场的分布规律,误差不超过7%,从而验证了解析表达式的正确性。  相似文献   

12.
针对差动变压器式位移传感器的性能及其在高温磁悬浮轴承中的应用,对环境温度升高影响差动变压器式位移传感器(DTDS)性能的机理和特征以及所采用的温度补偿技术进行了研究。采用比值方式的处理电路以及加入补偿电阻的方法改善了温度升高所带来位移传感器灵敏度升高、温度漂移和时间漂移的问题。对不同温度下的差动变压器式位移传感器进行标定得到了位移传感器的动静态性能,并将其应用到单自由度高温磁悬浮轴承(HTAMB)试验台上进行静态和模拟动态悬浮。研究结果表明,环境温度为550 ℃,被测物体移动范围在-0.35~+0.35 mm时,位移传感器的灵敏度在19.62 mV/μm,线性度为±0.74%,迟滞性为±0.40%,重复性为±0.97%,传感器截止频率在800 Hz左右;在单自由度高温磁悬浮轴承试验台上使用所研制的高温位移传感器,能实现被悬浮物体的稳定悬浮。  相似文献   

13.
飞机襟、缝翼运动机构中滚轮滑轨的磨损状况对飞机的安全性有很大的影响,为研究滚轮滑轨的磨损情况,基于某滚轮滑轨磨损试验机,Ni WLS-9234数据采集卡和LabVIEW软件开发平台,对滚轮和滑轨相对位移所产生的振动信号进行采集及分析,并开展大量试验,开发了一套磨损故障监测系统。系统采用Remote Panels监控技术、SQL与数据库访问技术、报表生成技术、以及小波分析技术,能够有效地监测磨损故障。  相似文献   

14.
 针对差动变压器式位移传感器的性能及其在高温磁悬浮轴承中的应用,对环境温度升高影响差动变压器式位移传感器(DTDS)性能的机理和特征以及所采用的温度补偿技术进行了研究。采用比值方式的处理电路以及加入补偿电阻的方法改善了温度升高所带来位移传感器灵敏度升高、温度漂移和时间漂移的问题。对不同温度下的差动变压器式位移传感器进行标定得到了位移传感器的动静态性能,并将其应用到单自由度高温磁悬浮轴承(HTAMB)试验台上进行静态和模拟动态悬浮。研究结果表明,环境温度为550 ℃,被测物体移动范围在-0.35~+0.35 mm时,位移传感器的灵敏度在19.62 mV/μm,线性度为±0.74%,迟滞性为±0.40%,重复性为±0.97%,传感器截止频率在800 Hz左右;在单自由度高温磁悬浮轴承试验台上使用所研制的高温位移传感器,能实现被悬浮物体的稳定悬浮。  相似文献   

15.
孟彬  王登  徐豪  刘备 《航空学报》2020,41(5):423358-423358
作为直动式电-机械转换器和二维阀本体之间的连接桥梁,反馈放大机构起着位置反馈、运动转换和推力放大的重要作用。但现有二维伺服比例阀的机械式反馈放大机构都存在摩擦磨损等非线性环节,对阀的静态特性影响明显。基于永磁悬浮技术提出一种新型的无接触式磁悬浮斜翼节,其依靠磁斥力将斜翼动子和阀芯悬浮在中位,同时实现位置反馈和运动转换功能,以彻底去除传统机械式反馈放大机构由于接触带来的摩擦磨损等因素对阀控制特性的不利影响。首先基于电磁场理论建立了磁悬浮斜翼节的数学解析模型,讨论了关键结构参数对磁力矩的影响;随后在Maxwell和Adams平台上分别对其静动态特性进行了基于有限元模拟和多体运动学分析的参数优化,在此基础上制作了实验样机,搭建实验台架研究了斜翼节的静动态特性,从而验证了其工程实用性。仿真和实验结果基本相符,3种验证的斜翼节样机中,当外接比例电磁铁推动外动子移动3 mm时,最大磁力矩可达到0.252 N·m,阶跃响应时间约120 ms。参数化设计表明减小工作气隙和增加斜翼节倾角均能提升斜翼节的磁力矩和动态响应,而在气隙中添加磁流体可提升磁力矩,但同时影响阶跃响应。研究工作对于后续磁悬浮斜翼节在二维伺服比例阀上的实际应用具有重要的参考价值。  相似文献   

16.
稀土永磁的商品化现状与工艺上的新进展   总被引:2,自引:0,他引:2  
描述了国内外NdFeB永磁材料的商品化现状及未来发展方向。为克服NdFeB永磁的某些局限性及提高其磁性能,重点介绍了近年来在工艺上优化合金组成与实现加工改性方面所做的大量工作,指出开发粘结型NdFeB是我国永磁产业的主要发展方向。  相似文献   

17.
本文阐述了惯性仪表中磁悬浮元件的工作原理,分析了材料特性对磁悬浮元件性能的影响。通过对由性能差异较大的材料制成的磁悬浮元件进行参数测试,测试的结果验证了分析的正确性,为磁悬浮元件设计中的材料选用提出了有益的参考。  相似文献   

18.
为了能够抑制低频微幅振动,提出了一种磁性并联低刚度隔振器,其由固支的承载梁和磁性弹簧并联构成.其中,磁性弹簧由4个永磁体对组成,每个永磁体对中的两块永磁体相吸配置,并在梁上对称均布;利用等效电流法对永磁体进行建模,根据安培定律给出了永磁体之间磁力的计算表达式,最后通过曲线拟合得到了其近似表达式;分析讨论了梁的等效刚度计算方法,进而得到了所提出的隔振系统的等效刚度计算方法;在不考虑系统非线性影响时,对该隔振系统进行了隔振特性分析及数值仿真.结果表明:与传统的线性隔振器相比,该隔振器能够有效地隔离低频振动,降低隔振系统的固有频率,从而拓宽了隔振器的隔振频带,并改善了系统的阻尼特性,有效地降低了共振区域的共振峰值.   相似文献   

19.
A novel heat transfer coefficient sensor is introduced and the design, manufacture,and calibration are described.The intended application of this instrument was on a high rotational speed test disc. In the experiments,the heat transfer coefficient sensor was calibrated under static state and rotational state respectively. The calibration under the static state was accomplished in a pipe: the inside diameter (ID) was 0.048m and the total length was 4m, the distance between the sensor and the inlet of the pipe was 3.5m; the standard value was measured using a self-made calibrator. The calibration under the rotational state was accomplished using a rotating disc: the diameter and thickness of the stainless disc were 800mm and 25mm, respectively;the sensor was installed at the location of r =250mm; the rotating disc driven by a 30kW direct current motor can supply the maximum rotational speed of 3000r/min. The standard value under rotational state was provided by an approximate empirical formula. The results show that the designed sensor can measure heat transfer coefficient directly under rotational state and static state with good accuracy and stability; the correlation factor of K are constant under static state and rotational state.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号